Skip to main content Accessibility help
×
Home

Basic and applied atomic spectroscopy in high-field ion diode acceleration gaps

  • J.E. Bailey (a1), A.B. Filuk (a1), A.L. Carlson (a1), D.J. Johnson (a1), P. Lake (a1), E.J. McGuire (a1), T.A. Mehlhorn (a1), T.D. Pointon (a1), T.J. Renk (a1), W.A. Stygar (a1), Y. Maron (a2) and E. Stambulchik (a2)...

Abstract

Achieving inertial confinement fusion using a light-ion-beam driver requires continued improvement in understanding ion diode physics. The power delivered to a light-ion beam target is strongly influenced by the evolution of the charge-particle distributions across the ion beam acceleration gap. Our strategy is to determine this evolution from time- and space-resolved measurements of the electric field using Stark-shifted line emission. In addition to diode physics, the unique high-field (∼10 MV/cm, ∼6T) conditions in present experiments offer the possibility to advance basic atomic physics, for example by measuring field ionization rates for tightly bound low-principal-quantum-number levels. In fact, extension of atomic physics into the high-field regime is required for accurate interpretation of diode physics measurements. This paper describes progress in ion diode physics and basic atomic physics, obtained with visible-light atomic spectroscopy measurements in the ∼20 TW Particle Beam Fusion Accelerator II ion diode.

Copyright

References

Hide All
Bailey, J. et al. 1990 Rev. Sci. Instrum. 61, 3075.
Bailey, J. et al. 1994 (IEEE Report No. 94CH3465–2, 1994).
Bailey, J. et al. 1995 Phys. Rev. Lett. 74, 1771.
Coldwell, R.L. & Bamford, G. J. 1991 The Theory and Operation of Spectral Analysis USing ROBFIT (AIP, New York).
Desjarlais, 1987 Phys. Rev. Lett. 59, 2295.
Desjarlais, et al. 1991 Phys. Rev. Lett. 67, 3094.
Green, T.A. 1995 Sandia Report SAND95–1794.
Hunter, L.R. et al. 1991 Phys. Rev. A 44, 6140.
Johnson, D.J., et al. 1982 J. Appl. Phys. 53, 4579.
Krall, N.A. 1994 Phys. Plasmas 1, 2371.
Leeper, R.J. et al. 1988 Rev. Sci. Instrum. 59, 1860.
Maron, Y. et al. 1986 Phys. Rev. Lett. 57, 699.
Maron, Y. et al. 1987 Phys. Rev. A 36, 2818.
Maron, Y. et al. 1989 Phys. Rev. A 39, 5856.
Mehlhorn, T.A. et al. 1994 NTIS Report PB95–144317.
McGuire, G. 1995 (to be published).
Odom, R. et al. 1976 Phys. Rev. A 14, 965.
Pointon, T.D. et al. 1994 Phys. Plasmas 1, 429.
Slutz, S.A. et al. 1986 J. Appl. Phys. 59, 11.
Slutz, S.A. & Johnson, W.A. 1992. Phys. Fluids B 4, 1349.
Stambulchik, E. & Maron, Y. 1994. Weizmann Institute of Science Report No. WIS-90/40/Sept.-PH (unpublished).
Stinnett, R.W. et al. 1992 NTIS Report No. PB92–206168.
Themelis, S.I. & Nicolaides, C.A. 1994 Phys. Rev. A. 51, 2801.
Windholz, L. et al. 1992 Phys. Rev. A, 5812.
VanDevender, J.P. & Cook, D.L. 1986 Science 232, 801.

Related content

Powered by UNSILO

Basic and applied atomic spectroscopy in high-field ion diode acceleration gaps

  • J.E. Bailey (a1), A.B. Filuk (a1), A.L. Carlson (a1), D.J. Johnson (a1), P. Lake (a1), E.J. McGuire (a1), T.A. Mehlhorn (a1), T.D. Pointon (a1), T.J. Renk (a1), W.A. Stygar (a1), Y. Maron (a2) and E. Stambulchik (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.