Skip to main content

Comparison of sub-micro/nano structure formation on polished silicon surface irradiated by nanosecond laser beam in ambient air and distilled water

  • Maliheh Sobhani (a1) and Mohammad Hossein Mahdieh (a1)

This paper compares sub-micro/nano structure formation on polished silicon surface irradiated by nanosecond laser pulses in ambient air and distilled water. Surface cluster density and optical reflectivity of silicon surface (at a typical wavelength of λ = 632 nm) were studied in terms of number of laser pulses and laser fluence. The surface density and optical reflectivity give information on clusters filling factor and clusters height respectively. The results show that the values of surface cluster density and clusters height strongly depend on laser pulse numbers and interacting ambient. Comparing to air, distilled water as an interacting ambient can affect more significantly the clusters height.

Corresponding author
Address correspondence and reprint requests to: Mohammad Hossein Mahdieh, Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran13114-16846. E-mail:
Hide All
Bäuerle D. (2011). Laser Processing and Chemistry. Heidelberg: Springer.
Brown M.S. & Arnold C.B. (2010). Fundamentals of laser-material interaction and application to multiscale surface modification. In Laser Precision Fabrication (Sugioka K. et al. , Eds.), Chapter 4, pp. 91120. Heidelberg: Springer.
Carey J.E. (2004). Femtosecond-laser Microstructuring of Silicon for Novel Optoelectronic Devices. Ph.D. dissertation. Cambridge: Harvard University.
Chen Y. & Vertes A. (2006). Adjustable fragmentation in laser desorption/ionization from laser-induced silicon microcolumn arrays. Anal. Chem. 78, 58355844.
Crouch C.H., Carey J.E., Shen M., Mazur E. & Génin F.Y. (2004). Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation. Appl. Phys. A 79, 16351641.
Crouch C.H., Carey J.E., Warrender J.M., Aziz M.J., Mazur E. & Génin F.Y. (2004). Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon. Appl. Phys. Lett. 84, 18501852.
Dobrzański L.A., Drygała A., Panek P., Lipiński M. & Zięba P. (2007). Application of laser in multicrystalline silicon surface processing. J. Achiev. Mater. Manuf. Eng. 24, 179182.
Dobrzański L.A. & Drygała A. (2008). Surface texturing of multicrystalline silicon solar cells. J. Achiev. Mater. Manuf. Eng. 31, 7782.
Dolgaev S.I., Fernández-Pradas J.M., Morenza J.L., Serra P. & Shafeev G.A. (2006). Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation. Appl. Phys. A 83, 417420.
Eliezer S., Eliaz N., Grossman E., Fisher D., Gouzman I., Henis Z., Pecker S., Horovitz Y., Fraenkel M., Maman S., Ezersky V. & Eliezer D. (2005). Nanoparticles and nanotubes induced by femtosecond lasers. Laser Part. Beams 23, 1519.
Fath P., Marckmann C., Bucher E. & Willeke G. (1995). Multicrystalline silicon solar cells using a new high throughput mechanical texturization technology and a roller printing metallization technique. Proc. 13th Conf of European Photovoltaic Solar Energy, pp. 29–32. Nice, France.
Finne R.M. & Klein D.L. (1967). A water-amine-complexing agent system for etching silicon. J. Electrochem. Soc. 114, 965970.
Fu G.S., Wang Y.L., Chu L.z., Zhou Y., Yu W., Han L. & Peng Y.C. (2005). The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas. Europhys. Lett. 69, 758762.
Huang Z., Carey J.E., Liu M., Guo X., Mazur E. & Campbell J.C. (2006). Microstructured silicon photodetector. Appl. Phys. Lett. 89, 033506.
Iyengar V.V., Nayak B.K. & Gupta M.C. (2010). Optical properties of silicon light trapping structures for photovoltaics. Sol. Energy Mater. Sol. Cells 94, 22512257.
Iyengar V.V., Nayak B.K., More K.L., Meyer H.M., Biegalski M.D., Li J.V. & Gupta M.C. (2011). Properties of ultrafast laser textured silicon for photovoltaics. Sol. Energy Mater. Sol. Cells 95, 27452751.
Jiménez-Jarquín J., Fernández-Guasti M., Haro-Poniatowski E. & Hernández-Pozos J.L. (2005). IR and UV laser-induced morphological changes in silicon surface under oxygen atmosphere. Phys. Status Solidi (c) 2, 37983801.
Kang M.H., Ryu K., Upadhyaya A. & Rohatgi A. (2011). Optimization of SiN AR coating for Si solar cells and modules through quantitative assessment of optical and efficiency loss mechanism. Prog. Photovolt: Res. Appl. 19, 983990.
Kazakevich P.V., Simakin A.V. & Shafeev G.A. (2006). Formation of periodic structures by laser ablation of metals in liquids. Appl. Surf. Sci. 252, 44574461.
Kolacek K., Straus J., Schmidt J., Frolov O., Prukner V., Shukurov A.Holy V., Sobota J. & Fort T. (2012) Nano-structuring of solid surface by extreme ultraviolet Ar8+ laser. Laser Part. Beams 30, 5763.
Latif A., Anwar M.S., Aleem M.A., Rafique M.S. & Khaleeq-Ur-Rahman M. (2009). Influence of number of laser shots on laser induced microstructures on Ag and Cu targets. Laser Part. Beams 27, 129136.
Liu S., Zhu J., Liu Y. & Zhao L. (2008). Laser induced plasma in the formation of surface-microstructured silicon. Mater. Lett. 62, 38813883.
Lowndes D.H., Fowlkes J.D. & Pedraza A.J. (2000). Early stages of pulsed- laser growth of silicon microcolumns and microcones in air and SF6. Appl. Surf. Sci. 154–155, 647658.
Lugomer S., Maksimović A., Karacs A. & Peto G. (2011). Spontaneous evolution of nanotips on silicon surface below the laser ablation threshold. Appl. Surf. Sci. 257, 78517855.
Mahdieh M.H. & Sobhani M. (2012). Experimental study of nano-structure and optical properties of polished silicon irradiated by nanosecond Nd:YAG laser beam. J. Instrum. 7, C01076.
Mansour N., Jamshidi-Ghaleh K. & Ashkenasi D. (2006). Formation of conical microstructures of silicon with picoseconds laser pulses in air. J. Laser Micro/Nanoeng. 1, 1216.
Menéndez-Manjón A., Barcikowski S., Shafeev G.A., Mazhukin V.I. & Chichkov B.N. (2010). Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation. Laser Part. Beams 28, 4552.
Ming Z., Gang Y., Jing-Tao Z. & Li Z. (2003). Picosecond pulse laser microstructuring of silicon. Chin. Phys. Lett. 20, 17891791.
Nakaya H., Nishida M., Takeda Y., Moriuchi S., Tonegawa T., Machida T. & Nunoi T. (1994). Polycrystalline silicon solar cells with V-grooved surface. Sol. Energy Mater. Sol. Cells 34, 219225.
Nijs J.F., Szlufcik J., Poortmans J., Sivoththaman S. & Mertens R.P. (2001). Advanced cost-effective crystalline silicon solar cell technologies. Sol. Energy Mater. Sol. Cells 65, 249259.
Panek P., Lipiński M. & Dutkiewicz J. (2005). Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells. J. Mater. Sci. 40, 14591463.
Pedraza A.J., Fowlkes J.D. & Guan Y.F. (2003). Surface nanostructuring of silicon. Appl. Phys. A 77, 277284.
Pedraza A.J., Fowlkes J.D., Jesse S., Mao C. & Lowndes D.H. (2000). Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres. Appl. Surf. Sci. 168, 251257.
Reinhardt C., Passinger S., Zorba V., Chichkov B.N., Fotakis C. (2007). Replica modeling of picosecond laser fabricated Si microstructures. Appl. Phys. A 87, 673677.
Riedel D., Hernandez-Pozos J.L., Palmer R.E. & Kolasinski K.W. (2004). Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6. Appl. Phys. A 78, 381385.
Schropp R.E.I. & Zeman M. (1998). Amorphous And Microcrystalline Silicon Solar Cells: Modeling, Materials And Device Technology. Netherlands: Kluwer Academic.
Serpengüzel A., Kurt A., Inanç I., Cary J.E. & Mazur E. (2008). Luminescence of black silicon. J. Nanophoton. 2, 021770.
Shen M.Y., Crouch C.H., Carey J.E. & Mazur E. (2004). Femtosecond laser-induced formation of submicrometer spikes on silicon in water. Appl. Phys. Lett. 85, 56945696.
Shen M.Y., Crouch C.H., Carey J.E., Younkin R. & Mazur E. (2003). Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask. Appl. Phys. Lett. 82, 17151717.
Sher M.J., Winkler M.T. & Mazur E. (2011). Pulsed-laser hyperdoping and Surface texturing for photovoltaics. MRS Bull. 36, 439445.
Singh P.K., Kumar R., Lal M., Singh S.N. & Das B.K. (2001). Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions. Sol. Energy Mater. Sol. Cells 70, 103113.
Sze S.M. & Ng K.K. (2006). Physics of Semiconductor Devices. Hoboken: John Willey & Sons.
Szlufcik J., Leuven I., Sivoththaman S., Nlis J.F., Mertens R.P. & Van Overstraeten R. (1997). Low-cost industrial technologies of crystalline silicon solar cells. Proc. IEEE 85, 711730.
Trtica M., Batani D., Redaelli R., Limpouch J., Kmetik V., Ciganovic J., Stasic J., Gakovic B. & Momcilovic M. (2012). Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum. Laser Part. Beams 30, 18.
Trtica M.S., Radak B.B., Gakovic B.M., Milovanovic D.S., Batani D. & Desai T. (2009). Surface modifications of Ti6Al4V by a picosecond Nd:YAG laser. Laser Part. Beams 27, 8590.
Tull B.R., Carey J.E., Mazur E., McDonald J.P. & Yalisove S.M. (2006). Silicon surface morphologies after femtosecond laser irradiation. MRS Bull. 31, 626633.
Wang Y.L., Xu W., Zhou Y., Chu L.Z. & Fu G.S. (2007). Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablation. Laser Part. Beams 25, 913.
Yonekubo H., Katayama K. & Sawada T. (2005). Formation of a ripple pattern at a water/silicon interface using an oscillating bubble. Appl. Phys. A 81, 843846.
Younkin R., Carey J.E., Mazur E., Levinson J.A. & Friend C.M. (2003). Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond laser pulses. J. Appl. Phys. 93, 26262629.
Zhao J. & Wang A. (2006). Rear emitter n-type passivated emitter, rear totally diffused silicon solar cell Structure. Appl. Phys. Lett. 88, 242102242104.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 82 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.