Skip to main content

The Current Trends in SBS and phase conjugation

  • T. Omatsu (a1), H.J. Kong (a2), S. Park (a2), S. Cha (a2), H. Yoshida (a3), K. Tsubakimoto (a3), H. Fujita (a3), N. Miyanaga (a3), M. Nakatsuka (a3), Y. Wang (a4), Z. Lu (a4), Z. Zheng (a4), Y. Zhang (a4), M. Kalal (a5), O. Slezak (a5), M. Ashihara (a1), T. Yoshino (a1), K. Hayashi (a1), Y. Tokizane (a1), M. Okida (a1), K. Miyamoto (a1), K. Toyoda (a1), A.A. Grabar (a6), Md. M. Kabir (a7), Y. Oishi (a7), H. Suzuki (a7), F. Kannari (a7), C. Schaefer (a8), K.R. Pandiri (a9), M. Katsuragawa (a9), Y.L. Wang (a4), Z.W. Lu (a4), S.Y. Wang (a4), Z.X. Zheng (a4), W.M. He (a4), D.Y. Lin (a4), W.L.J. Hasi (a4), X.Y. Guo (a4), H.H. Lu (a4), M.L. Fu (a4), S. Gong (a4), X.Z. Geng (a4), R.P. Sharma (a10), P. Sharma (a10), S. Rajput (a10), A.K. Bhardwaj (a11), C.Y. Zhu (a4) and W. Gao (a12)...

The current trends in stimulated Brillouin scattering and optical phase conjugation are overviewed. This report is formed by the selected papers presented in the “Fifth International Workshop on stimulated Brillouin scattering and phase conjugation 2010” in Japan. The nonlinear properties of phase conjugation based on stimulated Brillouin scattering and photo-refraction can compensate phase distortions in the high power laser systems, and they will also open up potentially novel laser technologies, e.g., phase stabilization, beam combination, pulse compression, ultrafast pulse shaping, and arbitrary waveform generation.

Corresponding author
Address correspondence and reprint requests to: Hong Jim Kong, Department of Physics, KAIST, 373-1 Gusong-dong, Yusong-gu Daejon, Korea305-701. E-mail:
Hide All
Acioli, L.H., Ulman, M., Ippen, E.P., Fujimoto, J.G., Kong, H., Chen, B.S. & Cronin-Golomb, M. (1991). Femtosecond temporal encoding in barium titanate. Opt. Lett. 16, 1984.
Afshaavahid, S., Devrelis, V. & Munch, J. (1998). Nature of intensity and phase modulations in stimulated Brillouin scattering. Phy. Rev. A. 57, 3961.
Akhmanov, A.S., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Soviet. Phys. Usp. 10, 609636.
Albach, D., Arzakantsyan, M., Bourdet, G., Chanteloup, J.-C., Hollander, Ph. & Vincent, B. (2008). Current status of the LUCIA laser system. Phys. 244, 032015.
Andreev, N.F., Bespalov, V.I. & Dvoretsky, M.A. (1989). Phase conjugation of single photons. IEEE J. Q.E. 25, 346350.
Aschroeder, W., Damzen, M.J. & Hutchinson, M.H.R. (1989). Polarization-decoupled brillouin-enhanced four-wave mixing. IEEE J. Q. E. 25, 460469.
Baeva, T., Gordienko, S. & Pukhov, A. (2007). Relativistic plasma control for single attosecond pulse generation: Theory, simulations and structure of the pulse. Laser Part. Beams 25, 339346.
Bai, J.H., Shi, J.W., Ouyang, M., Chen, X.D., Gong, W.P., Jing, H.M., Liu, J. & Liu, D.H. (2008). Method for measuring the threshold value of stimulated Brillouin scattering in water. Opt. Lett. 33, 15391541.
Baldis, H.A., Labaune, C., Moody, J.D., Jalinaud, T. & Tikhonchuk, V.T. (1998). Localization of stimulated Brillouin scattering in random phase plate speckles. Phys. Rev. Lett. 80, 19001903.
Baldis, H.A., Villeneuve, D.M., Fontaine, B.L., Enright, G.D., Labaune, C., Baton, S., Mounaix, Ph., Pesme, D., Casanova, M. & Rozmus, W. (1993). Stimulated Brillouin scattering in picoseconds time scale: Experiments and modeling. Phys. Fluids B 5, 33193327.
Barnes, N.P., Storm, M.E., Cross, P.L., Skolaut, M.W. Jr. (1990). Efficiency of Nd laser materials with laser diode pumping. IEEE J. Quan. Electr. 26, 558569.
Basov, N. & Zubarev, I. (1979). Powerful laser systems with phase conjugation by SMBS mirror. Appl. Phys. 20, 261264.
Basov, N.G., Zubarev, L.G., Mironov, A.B., Mikhailov, S.I. & Okulov, A.Yu. (1980). Laser interferometer with wave front reversing mirrors. Sov. Phys. JETP 52, 847851.
Batanov, V.A., Goncharov, V.K. & Min'ko, L.Ya. (1972). A high-power laser plasma source. J. Appl. Spectrosc. 16, 695697.
Baton, S.D., Amiranoff, F., Malka, V., Modena, A., Salvati, M. & Coulaud, C. (1998). Measurement of the stimulated Brillouin scattering from a spatially smoothed laser beam in a homogeneous large scale plasma. Phys. Rev. E 57, R4895R4898.
Baton, S.D., Rousseaux, C., Mounaix, Ph., Labaune, C., Fontaine, B.La., Pesme, D., Renard, N., Gary, S., Jacquet, M.L. & Baldis, H.A. (1994). Stimulated Brillouin scattering with a 1 ps laser pulse in a performed underdense plasma. Phys. Rev. E 49, 36023605.
Beak, D.H., Yoon, J.W., Shin, J.S. & Kong, H.J. (2008). Restoration of high spatial frequency at the image formed by stimulated Brillouin scattering with a prepulse. Appl. Phys. Lett. 93, 231113.
Bel'dyugin, I.M., Efimkov, V.F., Mikhailov, S.I. & Zubarev, I.G. (2005). Amplification of weak stokes signals in the transient regime of stimulated Brillouin scattering. J. Russian Laser Res. 26, 112.
Bers, A., Shkarofsky, I.P. & Shoucri, M. (2009). Relativistic Landau damping of electron plasma waves in stimulated Raman scattering. Phys. Plasma 16, 022104.
Betti, R., Zhou, C., Anderson, D.K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.
Beyer, O., Breunig, I., Kalkum, F. & Buse, K. (2006). Photorefractive effect in iron-doped lithium niobate crystals induced by femtosecond pulses of 1.5 µm wavelength. Appl. Phys. Lett. 88, 051120.
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Futchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high intensity laser matter interactions. Laser Part. Beams 25, 161167.
Boyd, R.W., Rzazewski, K. & Narum, P. (1990), Noise initiation of stimulated brillouin scattering. Phy. Rev. A 42, 55145521.
Brent, D.C., Neuman, W.A. & Hackel, L.A. (1992). Pulse-shape dependence of stimulated-Brillouin-scattering phase-conjugation fidelity for high input energies. Opt. Lett. 17, 1271.
Brignon, A. & Huignard, J.P. (2003). Phase Conjugate Laser Optics. New York: Wiley-Interscience.
Bruckner, K.A. & Jorna, S. (1974). Laser driven fusion. Rev. Modern Phys. 46, 325367.
Chalus, O. & Diels, J.C. (2007). Lifetime of fluorocarbon for high energy f stimulated Brillouin scattering. J. Opt. Soc. Am. B 24, 606608.
Chanteloup, J.-C., Albach, D., Lucianetti, A., Ertel, K., Banerjee, S., Mason, P.D., Hernandez-Gomez, C., Collier, J.L., Hein, J., Wolf, M., Körner, J. & Le Garrec, B.J. (2010). Multi kJ level laser concepts for HiPER facility. J. Phys. 244, 012010.
Chen, W.J., Hsieh, Z.M., Huang, S.W., Su, H.Y., Lai, C.J., Tang, T.T., Lin, C.H., Lee, C.K., Pan, R.P., Pan, C.L. & Kung, A.H. (2008). Sub-single-cycle optical pulse train with constant carrier envelope phase. Phys. Rev. Lett. 100, 163906.
Chiao, R.Y., Townes, C.H. & Stoicheff, B.P. (1964). Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 12, 592595.
Chirokikh, A., Seka, W., Simon, A., Craxton, R.S. & Tikhonchuk, V.T. (1998). Stimulated Brillouin scattering in long-scale-length laser plasmas. Phys. Plasmas 5, 11041109.
Clark, M.G., Disalvo, F.J., Glass, A. M. & Peterson, G.E. (1973). Electronic structure and optical index damage of iron-doped lithium niobate. J. Chem. Phys. 59, 6209.
Damzen, M., Hutchinson, M. & Schroeder, W. (1987). Direct measurement of the acoustic decay times of hypersonic waves generated by SBS. IEEE J. Quan. Electron. 23, 328334.
Dane, C.B., Neuman, W.A. & Hackel, L.A. (1992). Pulse-shape dependence of stimulated-Brillouin-scattering phaseconjugation fidelity for high input energies. Opt. Lett. 17, 12711273.
Dane, C.B., Neuman, W.A. & Hackel, L.A. (1994 a). High-energy SBS compression. IEEE Quan. Electron. QE-30, 19071915.
Dane, C.B., Zapata, L.E., Neuman, W.A., Norton, M.A. & Hackel, L.A. (1994 b). Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction. IEEE Quan. Electron. QE-31, 148162.
Daree, K. & Kaiser, W. (1971). Competition between stimulated Brillouin and Rayleigh scattering in absorbing media. Phys. Rev. Lett. 26, 816819.
Deutsch, C., Bret, A., Firpo, M.C., Gremillet, L., Lefebrave, E. & Lifschitz, A. (2008). Onset of coherent electromagnetic structures in the relativistic electron beam deuterium–tritium fuel interaction of fast ignition concern. Laser Part. Beams 26, 157165.
Dombi, P., Racz, P. & Bodi, B. (2009). Surface plasmon enhanced electron acceleration with few cycle laser pulses. Laser Part. Beams 27, 291296.
Drake, J.F., Kaw, P.K., Lee, Y.C., Schmidt, G., Liu, C.S. & Rosenbluth, M.N. (1974). Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 17, 778785.
Dromey, B., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kar, S., Kneip, S., Markey, K., Nagel, S.R., Willingale, L., Mckenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2009). Third harmonic order imaging as a focal spot diagnostic for high intensity laser solid interactions. Laser Part. Beams 27, 243248.
Eichler, H.J., Konig, I.R., Piitzold, H.J. & Schwartz, J. (1995). SBS mirrors for XeCl lasers with a broad spectrum. Appl. Phys. B 61, 7380.
Eliseev, V.V., Rozmus, W., Tikhonchuk, V.T. & Capjack, C.E. (1996). Effect of diffraction on stimulated Brillouin scattering from a single laser hot spot. Phys. Plasmas 3, 37543760.
Endo, A. (2004). High power laser plasma EUV light source for lithography. Proc. SPIE. 5448, 704711.
Erokhin, A.I., Kovalev, V.I. & FaïZullov, F.S. (1986). Determination of the parameters of a nonlinear response of liquids in an acoustic resonance region by the method of nondegenerate four-wave interaction. Sov. J. Quan. Electr. 16, 872877.
Estrabrook, E., Kruer, W.L. & Lasinski, B.F. (1980). Heating by Raman backscatter and forward scatter. Phys. Rev. Lett. 45, 13991403.
Fernandez, J.C., Cobble, J.A., Failor, B.H., Dubois, D.F., Montgomery, D.S., Rose, H.A., Vu, H.X., Wilde, B.H., Wilde, M.D. & Chrien, R.E. (1996). Observed dependence of stimulated Raman scattering on ion-acoustic damping in hohlraum plasmas. Phys. Rev. Lett. 77, 27022705.
Fuchs, J., Labuane, C., Depierreux, D., Baldis, H.A., Michard, A. & James, G. (2001). Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma. Phys. Rev. Lett. 86, 432435.
Gaeta, A.L. & Boyd, R.W. (1991). Stochastic dynamics of stimulated Brillouin scattering in an optical fiber. Phys. Rev. A 44, 32053209.
Gao, W., Lu, Z.W., He, W. M., Dong, Y.K. & Hasi, W.L.J. (2009). Characteristics of amplified spectrum of a weak frequencydetuned signal in a Brillouin amplifier. Laser Part. Beams 27, 465470.
Gao, W., Lu, Z.W., He, W. M., Hasi, W.L.J. & Zhang, Z. (2008). Spectrum evolution of spontaneous and pump-depleted stimulated Brillouin scattering in liquid media. Chin. Phys. 17, 37653770.
Giulietti, A., Macchi, A., Schifano, E., Biancalana, V., Danson, C., Giulietti, D., Gizzi, L.A. & Willi, O. (1999). Stimulated Brillouin scattering from underdense expending plasma in a regime of strong filamentation. Phys. Rev. E 59, 10381046.
Gong, S., Hasi, W.L.J., Lu, Z.W., Dong, F.L., Lin, D.Y., He, W.M., Zhao, X.Y. & Fan, R.Q. (2009). Study on the choosing principles of SBS new medium perfluoro-compound for phase conjugation mirror and optical limiter. Acta Phys. Sin. 58, 304308.
Grassi, W. & Testi, D. (2008). Transitional mixed convection in the entrance region of a horizontal pipe. 5th European Thermal-Sciences Conference, Eindhoven, The Netherlands.
Grofts, G.J., Damzen, M.J. & Lamb, R.A. (1991). Experimental and theoretical investigation of two-cell stimulated-Brillouinscattering systems. J. Opt. Soc. Am. B 8, 22822288.
Han, K.G. & Kong, H.J. (1995). Four-pass amplifier system compensation thermally induced birefringence effect, using a novel dumping mechanism. Jpn. J. Appl. Phys. 34, 994996.
Hase, M., Itano, T., Mizoguchi, K. & Nakashima, S. (1998). Selective enhancement of coherent optical phonons using THz-rate pulse train. Jpn. J. Appl. Phys. 37, L281L283.
Hasi, W.L.J., Gong, S., Lu, Z.W., Lin, D.Y., He, W.M. & Fan, R.Q. (2008 b). Generation of flat-top waveform in the time domain based on stimulated Brillouin scattering using medium with short phonon lifetime. Laser Part. Beams 26, 511516.
Hasi, W.L.J., Guo, X.Y., Lu, H.H., Fu, M.L., Gong, S., Geng, X.Z., Lu, Z.W., Lin, D.Y. & He, W.M. (2009 c). Investigation on effect of medium temperature upon SBS and SBS optical limiting. Laser Part. Beams 27, 733737.
Hasi, W.L.J., Lu, Z.W., Fu, M.L., Lu, H.H., Gong, S., Lin, D.Y. & He, W.M. (2009 a). Improved output energy characteristic of optical limiting based on double stimulated Brillouin scattering. Appl. Phys. B 95, 711714.
Hasi, W.L.J., Lu, Z.W., Fu, M.L., Lu, H.H., Gong, S., Lin, D.Y. & He, W.M. (2009 b). Investigation of optical limiting based on the combination of stimulated Brillouin scattering and carbon nanotube/HT-270 suspension. Laser Part. Beams 27, 533536.
Hasi, W.L.J., Lu, Z.W., Gong, S., Li, Q., Lin, D.Y. & He, W.M. (2008 c). Investigation on output energy characteristic of optical limiting based on the stimulated Brillouin scattering. Appl. Phys. B 92, 599602.
Hasi, W.L.J., Lu, Z.W., Gong, S., Liu, S.J., Li, Q. & He, W.M. (2008 a). Investigation on new SBS media of Perfluorocompound and Perfluoropolyether with low absorption coefficient and high power-load ability. Appl. Opt. 47, 10101014.
Hasi, W.L.J., Lu, Z.W., He, W.M. & Wang, S.Y. (2005). Study on Brillouin amplification in different liquid media. Acta Phys. Sin. 54, 742748 (in Chinese).
Hasi, W.L.J., Lu, Z.W., Li, Q. & He, W.M. (2007). Research on the enhancement of power-load of two-cell SBS system by choosing different media or mixture medium. Laser Part. Beams 25, 207210.
Hasi, W.L.J., Lu, Z.W., Liu, S.J., Li, Q., Yin, G.H. & He, W.M. (2008 d). Generation of flat-top waveform in the time domain based on stimulated Brillouin scattering. Appl. Phys. B 90, 503506.
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.
Horowitz, M. & Fischer, B. (1996). Photorefractive effect in a BaTiO3 crystal at the 1.5-μm wavelength regime by two-photon absorption. Opt. Lett. 21, 11201122.
Hüller, S. (1991). Stimulated Brillouin scattering off non-linear ion acoustic waves. Phys.Fluids B 3, 33173330.
Hüller, S., Masson-Laborde, P.E., Pesme, D., Labaune, C. & Bandulet, H. (2008). Modeling of stimulated Brillouin scattering in expanding plasma. J. Phys. 112, 022031.
Ikesue, A. (2002). Polycrystalline Nd:YAG ceramics lasers. Opt. Mater. 19, 183187.
Jain, R.K. & Stenersen, K. (1984). Picosecond pulse operation of a dye laser containing a phase-conjugate mirror. Opt. Lett. 9, 546.
Jakeman, E. & Ridely, K.D. (1996). Incomplete phase conjugation through a random phase screen. I. Theory. J. Opt. Soc. Am. A 13, 22792287.
Jermann, F., Simon, M. & Krätzig, E. (1995). Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities. J. Opt. Soc. Am. B 12, 2066.
Jiang, Z., Huang, C.-H., Leaird, D.E. & Weiner, A.M. (2007). Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat. Photon. 1, 463467.
Jin, F. & Richardson, M. (1995). New laser plasma source for extreme-ultraviolet lithography. Appl. Opt. 34, 57505760.
Joubert, C., Roblin, M.L. & Grousson, R. (1989). Temporal reversal of picosecond optical pulses by holographic phase conjugation. Appl. Opt. 28, 4604.
Kalal, M., Kong, H.J., Martinkova, M., Slezak, O. & Yoon, J.W. (2008 a), Current status of designing SBS PCM based IFE driver. 30th European Conference on Laser Interaction with Matter. August 31-September 5, Darmstadt, Germany.
Kalal, M., Kong, H.J., Martinkova, M., Slezak, O. & Yoon, J.W. (2010 a). SBS PCM technique applied for aiming at IFE pellets: First tests with amplifiers and harmonic conversion. J. Kor. Phys. Soc. 56, 184189.
Kalal, M., Kong, H.J., Slezak, O. & Yoon, J.W. (2008 b). Some issues in development of SBS PCM based IFE driver. 3rd Workshop on SBS and Phase Conjugation. August 25-26, Harbin, China.
Kalal, M., Kong, H.J., Slezak, O., Koresheva, E.R., Park, S. & Startsev, S.A. (2010 b). Recent Progress Made in the SBS PCM Approach to Self-navigation of Lasers on Direct Drive IFE Targets. J. Fusion Ener. 29, 527531.
Kalal, M., Kong, J.H. & Alexander, N.B. (2007 a). Consideration of SBS PCM technique for self-aiming of laser fusion drivers on IFE targets proposal and feasibility study. 3rd International Conference on the Frontiers of Plasma Physics and Technology. March 5–9, Bangkok, Thailand.
Kalal, M., Martinkova, M., Slezak, O., Kong, H.J. & Alexander, N.B. (2007 b). SBS PCM technique and its possible role in achieving IFE objectives. J. Phys. 112, 032049.
Kanaka, , Raju, P., Suzuki, T., Suda, A., Midorikawa, K. & Katsuragawa, M. (2010). Line-by-line control of 10-THz-frequency spacing Raman sidebands. Opt. Expr. 18, 732739.
Kappe, P., Strasser, A. & Ostermeyer, M. (2007). Investigation of the impact of SBS- parameters and loss modulation on the mode locking of an SBS-laser oscillator. Laser Part. Beams 25, 107116.
Katsuragawa, M. & Onose, T. (2005). Dual-wavelength injection-locked pulsed laser. Opt. Lett. 30, 24212423.
Katsuragawa, M., Yokoyama, K., Onose, T. & Misawa, K. (2005). Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands. Opt. Expr. 13, 56285634.
Kaw, P.K., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 16, 15221525.
Kawanaka, J., Takeuchi, Y., Yoshida, A., Pearce, S. J., Yasuhara, R., Kawashima, T. & Kan, H. (2010). Highly efficient cryogenically-cooled Yb:YAG laser. Laser Phys. 20, 10791084.
Kline, J.L., Montgomery, D.S., Rousseaux, C., Baton, S.D., Tassin, V., Hardin, R.A., Flippo, K.A., Johnson, R.P., Shimada, T., Yin, L., Albright, B.J., Rose, H.A. & Amiranoff, F. (2009). Investigation of stimulated Raman scattering using a short-pulse diffraction limited laser beam near the instability threshold. Laser Part. Beams 27, 185190.
Kmetik, V., Fiedorowics, H., Andreev, A.A., Witte, K.J., Daido, H., Fujita, H., Nakatsuka, M. & Yamanaka, T. (1998). Reliable stimulated Brillouin scattering compression of Nd:YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz. Appl. Opt. 37, 70857090.
Kong, H.J., Beak, D.H., Lee, D.W. & Lee, S.K. (2005 a). Wave form preservation of the backscattered stimulated Brillouin scattering wave by using a Pre-pulse injection. Opt. Lett. 30, 34013403.
Kong, H.J., Lee, J.Y., Shin, Y.S., Byun, J.O., Park, H.S. & Kim, H. (1997). Beam recombination characteristics in array laser amplification using stimulated Brillouin scattering phase conjugation. Opt. Rev. 4, 277283.
Kong, H.J., Lee, S.K. & Lee, D.W. (2005 b). Beam combined laser fusion driver with high power and high repetition rate using stimulated Brillouin scattering phase conjugation mirrors and self-phase-locking. Laser Part. Beams 23, 5559.
Kong, H.J., Lee, S.K. & Lee, D.W. (2005 c). Highly repetitive high energy/power beam combination laser: IFE laser driver using independent phase control of stimulated Brillouin scattering phase conjugate mirrors and pre-pulse technique. Lasers Part. Beams 23, 107111.
Kong, H.J., Lee, S.K., Lee, D.W. & Guo, H. (2005 d). Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation. Appl. Phys. Lett. 86, 051111.
Kong, H.J., Shin, J.S., Yoon, J.W. & Beak, D.H. (2009 a). Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors. Laser Part. Beams 27, 179184.
Kong, H.J., Shin, J.S., Yoon, J.W. & Beak, D.H. (2009 b). Wave-front dividing beam combined laser fusion driver using stimulated Brillouin scattering phase conjugation mirrors. Nucl. Fusion 49, 125002.
Kong, H.J., Yoon, J.W., Beak, D.H., Shin, J.S., Lee, S.K. & Lee, D.W. (2007 a). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25, 114.
Kong, H.J., Yoon, J.W., Beak, D.H., Shin, J.S., Lee, S.K. & Lee, D.W. (2007 b). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25, 225238.
Kong, H.J., Yoon, J.W., Shin, J.S. & Beak, D.H. (2008). Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors. Appl. Phys. Lett. 92, 021120,
Kong, H.J., Yoon, J.W., Shin, J.S., Beak, D.H. & Lee, B.J. (2006). Long-term stabilization of the beam combination laser with a phase controlled mirror for laser fusion driver. Laser Part. Beams 24, 519523.
Kovalev, V.I. & Harrison, R.G. (2007). Threshold for stimulated Brillouin scattering in optical fiber. Opt. Expr. 15, 1762517630.
Kovalev, V.I., Kotova, N.E. & Harrison, R.G. (2009). “Slow Light” in stimulated Brillouin scattering: On the influence of the spectral width of pump radiation on the group index. Opt. Expr. 17, 1731717323.
Krall, N.A. & Trivelpiece, A.W. (1973). Principle of Plasma Physics. Tokyo: McGraw Hill-Kogakusha.
Kruer, W.L. (2000). Interaction of plasmas with intense laser. Phys. Plasma 7, 22702278.
Lagemann, R.T., Woolf, W.E., Evans, J.S. & Underwood, N. (1948). Ultrasonic Velocity in Some Liquid Fluorocarbons. J. Am. Chem. Soc. 70, 29942996.
Lanzerotti, M.Y., Schirmer, R.W. & Gaeta, A.L. (1996). Phase conjugation of weak continuous-wave optical signals. Phys. Rev. Lett. 77, 22022205.
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Velyhan, A., Ullschmied, J., Gammino, S., Torrisi, L., Badziak, J., Parys, P., Rosinski, M., Ryc, L. & Wolowski, J. (2008). Angular distribution of ions emitted from laser plasma produced at various irradiation angles and laser intensities. Laser Part. Beams 26, 555565.
Lee, S., Choi, D., Kim, C. J. & Zhou, J. (2007), Highly efficient diode side-pumped Nd:YAG ceramic laser with 210 W output power Opt. Laser Techn. 39, 705709.
Lee, S.K., Kong, H.J. & Nakatsuka, M. (2005 a). Great improvement of phase controlling of the entirely independent stimulated Brillouin scattering phase conjugate mirrors by balancing the pump energies. Appl. Phys. Lett. 87, 161109.
Lee, S.K., Lee, D.W. & Kong, H.J. (2005 b). Stimulated Brillouin scattering by a multimode pump with alarge number of longitudinal modes. J. Korean Phys. Soc. 46, 443447.
Levis, R.J., Menkir, G.M. & Rabitz, H. (2001). Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Sci. 292, 709713.
Liang, J.Q., Katsuragawa, M., Kien, F.L. & Hakuta, K. (2000). Sideband generation using strongly driven Raman coherence in solid hydrogen. Phys. Rev. Lett. 85, 24742477.
Limpert, J., Deguil-Robin, N., Manek-Hönninger, I., Salin, F., Röser, F., Liem, A., Schreiber, T., Nolte, S., Zellmer, H., Tünnermann, A., Broeng, J., Petersson, A. & Jakobsen, C. (2005). High-power rod-type photonic crystal fiber laser. Opt. Exp. 13, 10551058.
Loree, T.R., Watkins, D.E., Johnson, T.M., Kurnit, N.A. & Fisher, R.A. (1987). Phase locking two beams by means of seeded Brillouin scattering. Opt. Lett. 12, 178180.
Lu, Z.W., Dong, Y.K. & Li, Q. (2007). Slow light in multi-line Brillouin gain spectrum. Opt. Exp. 15, 18711877.
Lu, Z.W., Gao, W., He, W.M., Zhang, Z. & Hasi, W.L.J. (2009). High amplification and low noise achieved by a double-stage non-collinear Brillouin amplifier. Opt. Expr. 17, 1067510680.
Maier, M. & Renner, G. (1971). Transient and quasistationary stimulated scattering of light. Opt. Commun. 3, 301304.
Mao, J.S., Zhao, J.Y., Li, Y.D., Xie, A.G., Fang, Z.S., Sannikov, V. & Gorshkov, A. (2001). HT-7 multipoint Nd laser Thomson scattering apparatus. Plasma Sci. Techn. 3, 691702.
Masse, J.E. & Barreau, G. (1995). Laser generation of stress waves in metal. Surf. Coatings Techn. 70, 231234.
McCrory, R.L., Meyerhofer, D., Betti, D.R., Craxton, R., Delettrez, S.J.A., Edgell, D.H., Glebov, V.Yu., Goncharov, V.N., Harding, D.R., Jacobs-Perkins, D.W., Knauer, J.P., Mars Hall, F.J., Mckenty, P.W., Radha, P.B., Regan, S.P., Sangster, T.C., Seka, W., Short, R.W., Skupsky, S., Smalyuk, V.A., Soures, J.M., Stoeckl, C., Yaakobi, B., Shvarts, D., Frenje, J.A., Li, C.K., Petrasso, R.D. & Séguin, F.H. (2008). Progress in direct-drive inertial confinement fusion. Phys. Plasmas 15, 055503.
Meister, S., Riesbeck, T. & Eichler, H.J. (2007). Glass fibers for stimulated Brillouin scattering and phase conjugation. Laser Part. Beams 25, 1521.
Miley, G.H., Hora, H., Osman, F., Evans, P. & Toups, P. (2005). Single event laser fusion using ns-MJ laser pulses. Laser Part. Beams 23, 453460.
Mitra, A., Yoshida, H., Fujita, H. & Nakatsuka, M. (2006). Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an Integrated set-up with laser energy up to 1.5 J. Jpn. J. Appl. Phys. 45, 16071611.
Miyamoto, R.Y. & Itoh, T. (2002) Retro directive arrays for wireless communications. IEEE Microwave Mag. 3, 6772.
Moses, E.I (2009). Ignition on the National Ignition Facility: A path towards inertial fusion energy. Nucl. Fusion 49, 104022.
Myatt, J., Pesme, D., Huller, S., Maximov, A.V., Rozmus, W. & Capjack, C.E. (2001). Nonlinear propagation of a randomized laser beam through an expanding plasma. Phys. Rev. Lett. 87, 255003.
Omatsu, T., Minassian, A. & Damzen, M.J. (2002). High quality 7.5 W continuous-wave operation of a Nd:YVO4 laser with a Rh:BaTiO3 phase conjugate mirror. Jpn. J. Appl. Phys. 41, 20242027.
Ostermeyer, M., Kong, H.J., Kovalev, V.I., Harrison, R.G., Fotiadi, A.A., Megret, P., Kalal, M., Slezak, O., Yoon, J.W., Shin, J.S., Beak, D.H., Lee, S.K., Lu, Z., Wang, S., Lin, D., Knight, J.C., Kotova, N.E., Straber, A., Scheikhobeid, A., Riesbeck, T., Meister, S., Eichler, H.J., Wang, Y., He, W., Yoshida, H., Fujita, H., Nakatsuka, M., Hatae, T., Park, H., Lim, C., Omatsu, T., Nawata, K., Shiba, N., Antipov, O.L., Kuznetsov, M.S. & Zakharov, N.G. (2008). Trends in stimulated Brillouin scattering and optical phase conjugation. Laser Part. Beams 26, 297362.
Ozoki, T., Bom Elouga, L.B., Ganeev, R., Kieffer, J.C., Sazuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.
Park, H., Lim, C., Yoshida, H. & Nakatsuka, M. (2006). Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids. Jpn. J. Appl. Phys. 45, 50735075.
Pettazzi, F., Alonzo, M., Centini, M., Petris, A., Vlad, V. I., Chauvet, M. & Fazio, E. (2007). Self-trapping of low-energy infrared femtosecond beams in lithium niobate. Phys. Rev. A. 76, 063818.
Pohl, D. & Kaiser, W. (1970). Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media: Determination of phonon lifetimes. Phys. Rev. B 1, 3143.
Roblin, M.L., Gires, F., Grousson, R. & Lavallard, P. (1987). Enregistrement par holographie de volume d'une loi de phase spectrale: Application a la compression d'impulsion picoseconde. Opt. Commun. 62, 209.
Rockwell, D.A. (1988). A review of phase-conjugate solid-state lasers IEEE J. Quan. Electron. 24, 11241140.
Rosas, E., Aboites, V. & Damzen, M.J. (1998). Transient evolution and spatial mode size analysis of adaptive laser oscillators. Opt. Commun. 156, 419425.
Rozmus, W., Sharma, R.P., Samson, J.C. & Tighe, W. (1987). Nonlinear evolution of stimulated Raman scattering in homogeneous plasmas. Phys Fluids 30, 21812193.
Salamin, Y.I., Harman, Z. & Keitel, C.H. (2008). Direct high-power laser acceleration of ions for medical applications. Phys. Rev. Lett. 100, 155004.
Salamin, Y.I., Hu, S.X., Hatsagortsyan, K.Z. & Keitel, C.H. (2006). Relativistic high-power laser–matter interactions. Phys. Rept. 427, 41155.
Schäfer, C.A. (2010). Continuous adaptive beam pointing and tracking for laser power transmission. Opt. Expr. 18, 1345113468.
Schiemann, S., Ubachs, W. & Hogervorst, W. (1997). Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup. IEEE J. Quan. Electron. 33, 358366.
Scott, A.M. & Ridley, K.D. (1989). A review of Brillouin enhanced four-wave mixing. IEEE J. Q.E. 25, 438459.
Sen, P. & Sen, K. (1986). Correlation and competition between stimulated Raman and Brillouin scattering processes. Phys. Rev. B. 33, 14271429.
Shahraam, A., Vladimyros, D. & Jesper, M. (1998). Nature of intensity and phase modulations in stimulated Brillouin scattering. Phys. Rev. A. 57, 39613971.
Shin, J.S., Park, S. & Kong, H.J. (2010 a), Compensation of the thermally induced depolarization in a double-pass Nd:YAG rod amplifier with a stimulated Brillouin scattering phase conjugate mirror. Opt. Commun. 283, 24022405.
Shin, J.S., Park, S., Kong, H.J. & Yoon, J.W. (2010 b). Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors. Appl. Phys. Lett. 96, 131116.
Shuangyi, W., Zhiwei, L., Dianyang, L., Lei, D. & Dongbin, J. (2007). Investigation of serial coherent laser beam combination based on Brillouin amplification. Laser Part. Beams 25, 7983.
Shverdin, M.Y., Walker, D.R., Yavuz, D.D., Yin, G.Y. & Harris, S.E.. (2005). Generation of a single-cycle optical pulse. Phys. Rev. Lett. 94, 033904033907.
Siegman, A.E. (1986). Lasers. Mill Valley: University Science Books.
Sodha, M.S., Mishra, S.K. & Mishra, S. (2009). Focusing of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 27, 5768.
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. E 3, 169265.
Sokolov, A.V., Walker, D.R., Yavuz, D.D., Yin, G.Y. & Harris, S.E. (2000). Raman generation by phased and anti phased molecular states. Phys. Rev. Lett. 85, 562565.
Spalding, I.J. (1978). High power lasers next term for previous term processing of materials next term — A comparison of available systems. Opt. Laser Techn. 10, 2932.
Steinsiek, F., Foth, W.P., Weber, K.H., Schäfer, C.A. & Foth, H.J. (2003). Wireless power transmission experiment as an early contribution to planetary exploration missions. Proc. 54th International Astronautical Congress, IAC-03-R.3.06. Bremen, Germany.
Sternklar, S., Glick, Y. & Jackel, S. (1992). Noise limitations of Brillouin two-beam coupling: theory and experiment. J. Opt. Soc. Am. B. 9, 391397.
Suda, A., Oishi, Y., Nagasaka, K., Wang, P. & Midorikawa, K. (2001). A spatial light modulator based on fused-silica plates for adaptive feedback control of intense femtosecond laser pulses. Opt. Expr. 9, 26.
Sumiyoshi, T., Sekita, H., Arai, T., Sato, S., Ishihara, M. & Kikuchi, M. (1999). High-power continuous-wave 3- and 2-μm cascade Ho3+: ZBLAN fiber laser and its medical applications. IEEE J. Quan. Electron. 5, 936943.
Suzuki, T., Hirai, M. & Katsuragawa, M. (2008 a). Octave-spanning Raman comb with carrier envelope offset control. Phys. Rev. Lett. 101, 243602.
Suzuki, T., Sawayama, N. & Katsuragawa, M. (2008 b). Spectral phase measurements for broad Raman sidebands by using spectral interferometry. Opt. Lett. 33, 28092811.
Tajima, T. & Dawson, J.M. (1979). Laser electron Accelerator. Phys. Rev. Lett. 43, 267270.
Tesla, N. (1904). The transmission of electrical energy without wires. Elec. World Eng. 35, 429431.
Thareja, R.K. & Sharma, A.K. (2006). Reactive pulsed laser ablation: Plasma studies. Laser Part. Beams 24, 311320.
Udaiyan, D., Crofts, G.J., Omatsu, T. & Damzen, M.J. (1998). Self-consistent spatial mode analysis of self-adaptive laser oscillators. J. Opt. Soc. Am. B 15, 13461352.
Veiko, V.P., Shakhno, E.A., Smirnov, V.N., Miaskovski, A.M. & Nikishin, G.D. (2006). Laser-induced film deposition by LIFT: Physical mechanisms and applications. Laser Part. Beams 24, 203209.
Von Der Linde, D., Glass, A.M. & Rodgers, K.F. (1974). Multiphoton photorefractive processes for optical storage in LiNbO3. Appl. Phys. Lett. 25, 155157.
Wang, S.Y., Lu, Z.W., Lin, D.Y., Ding, L. & Jiang, D.B. (2007). Investigation of serial coherent laser beam combination based on Brillouin amplification. Laser Part. Beams 25, 7983.
Wang, Y.L., Lu, Z.W., He, W.M., Zheng, Z.X. & Zhao, Y.H. (2009 a). A new measurement of stimulated Brillouin scattering phase conjugation fidelity for high pump energies. Laser Part. Beams 27, 297302.
Wang, Y.L., Lu, Z.W., Li, Y., Wu, P., Zheng, Z.X. & He, W.M. (2010). Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror. Appl. Phys. B 98, 391395.
Wang, Y.L., Lu, Z.W., Wang, S.Y., Zheng, Z.X., He, W.M. & Lin, D.Y. (2009 b). Investigation on efficiency of non-collinear serial laser beam combination based on Brillouin amplification. Laser Part. Beams 27, 651655.
Weaver, M.A.S.E. (2009). Efficient cooling of lasers, LEDs and photonics devices. Patent (IPC8 Class: AF21V2900FI).
Yang, A.L., Yang, J.G., Ding, L., Li, M.Z., Zhang, X.M. & Mang, Y.Z. (2001). Phase Jump in the Process of Stimulated Brillouin Scattering. Chinese J. Lasers 28, 732734.
Yao, X.S. & Feinberg, J. (1993). Temporal shaping of optical pulses using beam coupling in a photorefractive crystal. Opt. Lett. 18, 622.
Yasuhara, R., Kawashima, T., Sekine, T., Kurita, T., Ikegawa, T., Matsumoto, O., Miyamoto, M., Kan, H., Yoshida, H., Kawanaka, J., Nakatsuka, M., Miyanaga, N., Izawa, Y. & Kanabe, T. (2008). 213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror. Opt. Lett. 33, 17111713.
Yau, H., Wang, P., Pan, E., Chen, J. & Chang, J.Y. (1997). Self-pumped phase conjugation with picosecond and femtosecond pulses using BaTiO3. Opt. Commun. 135, 331.
Yoon, J.W., Shin, J.S., Kong, H.J. & Lee, J. (2009). Investigation of the relationship between the prepulse energy and the delay time in the waveform preservation of a stimulated Brillouin scattering wave by prepulse injection. J. Opt. Soc.Am. B 26.
Yoshida, H., Fujita, H., Nakatsuka, M. & Fujinoki, A. (2004). Temporal Compression by Stimulated-Brillouin-Scattering of Q-switched Pulse with Fused Quartz Glass. Jpn. J. Appl. Phys. 43, 11031105.
Yoshida, H., Fujita, H., Nakatsuka, M. & Yoshida, K. (1999). High resistant phase-conjugated stimulated Brillouin scattering mirror using fused-silica glass for Nd:YAG laser system. Jpn. J. Appl. Phys. 38, 521523.
Yoshida, H., Fujita, H., Nakatsuka, M., Fujinoki, A. & Yoshida, K. (2003). Fused-quartz glass with low optical quality as a high damage-resistant stimulated Brillouin-scattering phase-conjugation mirror. Opt. Commun. 222, 257267.
Yoshida, H., Fujita, H., Nakatsuka, M., Ueda, T. & Fujinoki, A. (2007). Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength. Laser Part. Beams 25, 481488.
Yoshida, H., Hatae, T., Fujita, H., Nakatsuka, M. & Kitamura, S. (2009). A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength. Opt. Expr. 17, 1365413662.
Yoshida, H., Hataeh, T., Fujita, H., Nakatsuka, M. & Kitamura, S. (2010). A High-energy 160-ps Pulse Generation by Stimulated Brillouin Scattering from Heavy Fluorocarbon Liquid at 1064 nm Wavelength. Opt. Expr. 17, 1365413662.
Yoshida, H., Kmetik, V., Fujita, H., Nakatsuka, M., T. Yamanaka, T. & Yoshida, K. (1997). Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror. Appl. Opt. 36, 37393744.
Young, P.E., Baldis, H.A., Drake, R.P., Campbell, E.M. & Estrabrook, K.G. (1988). Direct evidence of ponderomotive Filamentation in laser-produced plasma. Phys. Rev. Lett. 61, 23362339.
Zel'dovich, B.Ya., Pilipetskii, N.F. & Shkunov, V.V. (1982). Phase conjugation in stimulated scattering. Sov. Phys. Usp. 25, 713737.
Zel'dovich, B.Ya., Popovichev, V.I., Ragulsky, V.V. & Faizullov, F.S. (1972). Connection between the wave fronts of the reflected and exciting light in stimulated Mandel'shtam Brillouin scattering. Sov. Phys. JETP 15, 109112.
Zheng, W., Zhang, X., Wei, X., Jing, F., Sui, Z., Zheng, K., Yuan, X., Jiang, X., Su, J., Zhou, H., Li, M., Wang, J., Hu, D., He, S., Xiang, Y., Peng, Z., Feng, B., Guo, L., Li, X., Zhu, Q., Yu, H., You, Y., Fan, D. & Zhang, W. (2008), Status of the SG-III solid-state laser facility, Journal of Physics: Conference Series 112 032009
Zhou, B., Kane, T. J., Dixon, G. J. & Byer, R.L. (1985). Efficient, frequency-stable laser-diode-pumped Nd:YAG laser. Opt. Lett. 10, 6264.
Zhu, C.Y., Lu, Z.W., He, W.M., Ba, D.X., Wang, Y., Gao, W. & Dong, Y.K. (2007). Theoretical study on temporal behavior of Brillouin-enhanced four-wave mixing. Acta Phys. Sin. (in Chinese) 56, 229235.
Zhu, C.Y., Lu, Z.W., He, W.M., Guan, J. & Xu, X.C. (2008). Brillouin-enhanced four-wave mixing phase conjugation mirror with large signals. Chinese J. Lasers 35, 845848 (in Chinese).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 5
Total number of PDF views: 35 *
Loading metrics...

Abstract views

Total abstract views: 262 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th March 2018. This data will be updated every 24 hours.