Skip to main content Accessibility help
×
Home

Effect of transverse magnetic fields on high-harmonic generation in intense laser–solid interaction

  • J. Mu (a1), F.-Y. Li (a2), Z.-M. Sheng (a1) (a2) and J. Zhang (a1)

Abstract

The effect of transverse magnetic fields on surface high-harmonic generation in intense laser–solid interactions is investigated. It is shown that the longitudinal motion of electrons can be coupled with the transverse motion via the magnetic fields, which lead to even-order harmonics under normal laser incidence. The dependence of the coupling efficiency and hence even harmonic generation with preplasma scale length and magnetic field strength are presented based upon particle-in-cell simulations. When the magnetic field is parallel to the laser electric field, the spectral intensity of the second harmonic is proportional to the magnetic field strength in a wide range up to 160 MG, while the situation with the magnetic field perpendicular to the laser electric field is more complicated. The second harmonic generation due to the magnetic field also tends to increase with the plasma density scale lengths, which is different from the high-harmonic generation by the oscillating mirror mechanism. With the increase of the laser spot size from a laser wavelength λL, both the magnetic field-induced harmonics and oscillating mirror high harmonics tend to increase first and then become saturated after 3λL. The magnetic field-induced second harmonic may be used to evaluate large self-generated magnetic fields developed near the critical density region and the preplasma conditions.

Copyright

Corresponding author

Address correspondence and reprint requests to: Z.-M. Sheng, Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China and SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK. E-mail: zmsheng@sjtu.edu.cn

References

Hide All
An der Brügge, D., Kumar, N., Pukhov, A. & Rödel, C. (2012). Influence of surface waves on plasma high-order harmonic generation. Phys. Rev. Lett. 108, 125002.
Bulanov, S.V., Naumova, N.M. & Pegoraro, F. (1994). Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745757.
Dollar, F., Cummings, P., Chvykov, V., Willingale, L., Vargas, M., Yanovsky, V., Zulick, C., Maksimchuk, A., Thomas, A. & Krushelnick, K. (2013). Scaling high-order harmonic generation from laser–solid interactions to ultrahigh intensity. Phys. Rev. Lett. 110, 175002.
Dromey, B., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kar, S., Kneip, S., Markey, K., Nagel, S.R., Willingale, L., McKenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2009). Third harmonic order imaging as a focal spot diagnostic for high intensity laser–solid interactions. Laser Part. Beams 27, 243248.
Földes, I., Kocsis, G., Racz, E., Szatmari, S. & Veres, G. (2003). Generation of high harmonics in laser plasmas. Laser Part. Beams 21, 517521.
Fonseca, R.A., Silva, L.O., Tsung, F.S., Decyk, V.K., Lu, W., Ren, C., Mori, W.B., Deng, S., Lee, S., Katsouleas, T. & Adam, J.C. (2002). OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In International Conference on Computational Science, pp. 342351. Berlin, Heidelberg: Springer.
Ghorbanalilu, M. (2012). Second and third harmonics generation in the interaction of strongly magnetized dense plasma with an intense laser beam. Laser Part. Beams 30, 291298.
Gizzi, L., Giulietti, D., Giulietti, A., Audebert, P., Bastiani, S., Geindre, J.-P. & Mysyrowicz, A. (1996). Simultaneous measurements of hard × rays and second-harmonic emission in fs laser–target interactions. Phys. Rev. Lett. 76, 2278.
Kahaly, S., Monchocé, S., Vincenti, H., Dzelzainis, T., Dromey, B., Zepf, M., Martin, P. & Quéré, F. (2013). Direct observation of density-gradient effects in harmonic generation from plasma mirrors. Phys. Rev. Lett. 110, 175001.
Kahaly, S., Mondal, S., Kumar, G.R., Sengupta, S., Das, A. & Kaw, P. (2009). Polarimetric detection of laser induced ultrashort magnetic pulses in overdense plasma. Phys. Plasmas 16, 043114.
Lichters, R., Meyer-ter Vehn, J. & Pukhov, A. (1996). Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 34253437.
Ma, T., Sawada, H., Patel, P.K., Chen, C.D., Divol, L., Higginson, D.P., Kemp, A.J., Key, M.H., Larson, D.J., Le Pape, S., Link, A., MacPhee, A.G., McLean, H.S., Ping, Y., Stephens, R.B., Wilks, S.C. & Beg, F.N. (2012). Hot electron temperature and coupling efficiency scaling with prepulse for cone-guided fast ignition. Phys. Rev. Lett. 108, 115004.
MacPhee, A.G., Divol, L., Kemp, A.J., Akli, K.U., Beg, F.N., Chen, C.D., Chen, H., Hey, D.S., Fedosejevs, R.J., Freeman, R.R., Henesian, M., Key, M.H., Le Pape, S., Link, A., Ma, T., Mackinnon, A.J., Ovchinnikov, V.M., Patel, P.K., Phillips, T.W., Stephens, R.B., Tabak, M., Town, R., Tsui, Y.Y., Van Woerkom, L.D., Wei, M.S. & Wilks, S.C. (2010). Limitation on prepulse level for cone-guided fast-ignition inertial confinement fusion. Phys. Rev. Lett. 104, 055002.
Mairesse, Y., De Bohan, A., Frasinski, L.J., Merdji, H., Dinu, L.C., Monchicourt, P., Breger, P., Kovac̆ev, M., Taeb, R., Carré, B., Muller, H.G., Agostini, P. & Salières, P. (2003). Attosecond synchronization of high-harmonic soft x-rays. Science 302(5650), 15401543.
Mason, R. & Tabak, M. (1998). Magnetic field generation in high-intensity-laser–matter interactions. Phys. Rev. Lett. 80, 524.
Ozaki, T., Elouga Bom, L., Ganeev, R., Kieffer, J.-C., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.
Quéré, F., Thaury, C., Monot, P., Dobosz, S., Martin, P., Geindre, J.-P. & Audebert, P. (2006). Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004.
Sheng, Z.-M., Mima, K., Zhang, J. & Sanuki, H. (2005). Emission of electromagnetic pulses from laser wakefields through linear mode conversion. Phys. Rev. Lett. 94, 095003.
Stambulchik, E., Tsigutkin, K. & Maron, Y. (2007). Spectroscopic method for measuring plasma magnetic fields having arbitrary distributions of direction and amplitude. Phys. Rev. Lett. 98, 225001.
Sudan, R.N. (1993). Mechanism for the generation of 109 g magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target. Phys. Rev. Lett. 70, 30753078.
Tatarakis, M., Watts, I., Beg, F.N., Clark, E.L., Dangor, A.E., Gopal, A., Haines, M.G., Norreys, P.A., Wagner, U., Wei, M.-S., Zepf, M. & Krushelnick, K. (2002). Laser technology: measuring huge magnetic fields. Nature 415(6869), 280280.
Tsakiris, G.D., Eidmann, K., Meyer-ter Vehn, J. & Krausz, F. (2006). Route to intense single attosecond pulses. New J. Phys. 8, 19.
Weng, S., Murakami, M. & Sheng, Z. (2015). Reducing ion energy spread in hole-boring radiation pressure acceleration by using two-ion-species targets. Laser Part. Beams 33, 103107.
Yeung, M., Bierbach, J., Eckner, E., Rykovanov, S., Kuschel, S., Sävert, A., Förster, M., Rödel, C., Paulus, G.G., Cousens, S., Coughlan, M., Dromey, B. & Zepf, M. (2015). Noncollinear polarization gating of attosecond pulse trains in the relativistic regime. Phys. Rev. Lett. 115, 193903.
Zepf, M., Castro-Colin, M., Chambers, D., Preston, S.G., Wark, J.S., Zhang, J., Danson, C.N., Neely, D., Norreys, P., Dangor, A.E., Dyson, A., Lee, P., Fews, A.P., Gibbon, P., Moustaizis, S. & Key, M.H. (1996). Measurements of the hole boring velocity from Doppler shifted harmonic emission from solid targets. Phys. Plasmas 3, 32423244.
Zheng, J., Tanaka, K., Sentoku, Y., Offenberger, A., Kitagawa, Y., Kodama, R., Kurahashi, T., Mima, K. & Yamanaka, T. (2002). Harmonic emission with cyclotron satellite structure due to strong magnetic fields produced by ultra-intense laser–plasma interaction. Phys. Plasmas 9, 31933196.

Keywords

Effect of transverse magnetic fields on high-harmonic generation in intense laser–solid interaction

  • J. Mu (a1), F.-Y. Li (a2), Z.-M. Sheng (a1) (a2) and J. Zhang (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed