Skip to main content

Effective laser driven proton acceleration from near critical density hydrogen plasma

  • Ashutosh Sharma (a1) and Alexander Andreev (a1) (a2)

Recent advances in the production of high repetition, high power, and short laser pulse have enabled the generation of high-energy proton beam, required for technology and other medical applications. Here we demonstrate the effective laser driven proton acceleration from near-critical density hydrogen plasma by employing the short and intense laser pulse through three-dimensional (3D) particle-in-cell (PIC) simulation. The generation of strong magnetic field is demonstrated by numerical results and scaled with the plasma density and the electric field of laser. 3D PIC simulation results show the ring shaped proton density distribution where the protons are accelerated along the laser axis with fairly low divergence accompanied by off-axis beam of ring-like shape.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effective laser driven proton acceleration from near critical density hydrogen plasma
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effective laser driven proton acceleration from near critical density hydrogen plasma
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effective laser driven proton acceleration from near critical density hydrogen plasma
      Available formats
Corresponding author
Address correspondence and reprint requests to: Ashutosh Sharma, ELI-ALPS, Szeged, Hungary. E-mail:
Hide All
Amitani, H., Esirkepov, T., Bulanov, S., Nishihara, K., Kuznetsov, A. & Kamenets, F. (2002). Accelerated dense ion filament formed by ultra-intense laser in plasma slab. AIP Conf. Proc. 611, 340345.
Bake, M.A., Zhang, S., Xie, B.S., Hong, X.R. & Wang, H.Y. (2012). Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density. Phys. Plasmas 19, 083103083109.
Baraffe, I. (2005). Structure and evolution of giant planets. Space Sci. Rev. 116, 6776.
Borghesi, M., Mackinnon, A.J., Campbell, D.H., Hicks, D.G., Kar, S., Patel, P.K., Price, D., Romagnani, L., Schiavi, A. & Willi, O. (2004). Multi-MeV proton source investigations in ultraintense laser-foil interactions. Phys. Rev. Lett. 92, 055003055006.
Borghesi, M., Sarri, G., Cecchetti, C.A., Kourakis, I., Hoarty, D., Stevenson, R.M., James, S., Brown, C.D., Hobbs, P., Lockyear, J., Morton, J., Willi, O., Jung, R. & Dieckmann, M. (2010). Progress in proton radiography for diagnosis of ICF-relevant plasmas. Laser Part. Beams 28, 277284.
Bulanov, S.V. & Khoroshkov, V.S. (2002). Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28, 453456.
Bulanov, S.S., Bychenkov, V.Y., Chvykov, V., Kalinchenko, G., Litzenberg, D.W., Matsuoka, T., Thomas, A.G.R., Willingale, L., Yanovsky, V., Krushelnick, K. & Maksimchuk, A. (2010 a). Generation of GeV protons from 1 PW laser interaction with near critical density targets. Phys. Plasmas 17, 043105043112.
Bulanov, S.S., Esarey, E., Schroeder, C.B., Leemans, W.P., Bulanov, S.V., Margarone, D., Korn, G. & Haberer, T. (2015). Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy. Phys. Rev. ST Accel. Beams 18, 061302061307.
Bulanov, S.S., Litzenberg, D.W., Pirozhkov, A.S., Thomas, A.G.R., Willingale, L., Krushelnick, K. & Maksimchuk, A. (2010 b). Laser acceleration of protons from near critical density targets for application to radiation therapy,
Bulanov, S.V., Dylov, D.V., Esirkepov, T.Zh., Kamenets, F.F. & Sokolov, D.V. (2005). Ion acceleration in a dipole vortex in a laser plasma corona. Plasma Phys. Rep. 31, 369381.
Bussmann, M., Burau, H., Cowan, T.E., Debus, A., Huebl, A., Juckeland, G., Kluge, T., Nagel, W.E., Pausch, R., Schmitt, F., Schramm, U., Schuchart, J. & Widera, R. (2013). Radiative Signatures of the Relativistic Kelvin-Helmholtz Instability, Proc. of the Int. Conf. on High Performance Comp., Networking, Storage and Anal. 5:1–5:12.
Burau, H. (2010). PIConGPU: A fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. 38, 28312839.
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernández, J., Gauthier, J.C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pépin, H. & Renard- LeGalloudec, N. (2004). Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801204804.
Daido, H., Nishiuchi, M. & Pirozhkov, A.S. (2012). Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401056471.
Dyer, G.M., Bernstein, A.C., Cho, B.I., Osterholz, J., Grigsby, W., Dalton, A., Shepherd, R., Ping, Y., Chen, H., Widmann, K. & Ditmire, T. (2008). Equation-of-state measurement of dense plasmas heated with fast protons. Phys. Rev. Lett. 101, 1500215005.
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003175006.
Fiuza, F., Stockem, A., Boella, E., Fonseca, R.A., Silva, L.O., Haberberger, D., Tochitsky, S., Mori, W.B. & Joshi, C. (2013). Ion acceleration from laser-driven electrostatic shocks. Phys. Plasmas 20, 056304056311.
Fritzler, S., Malka, V., Grillon, G., Rousseau, J.P., and Burgy, F., Lefebvre, E., D'Humieres, E., McKenna, P. & Ledingham, K.W.D. (2003). Proton beams generated with high-intensity lasers: Applications to medical isotope production. Appl. Phys. Lett. 83, 30393041.
Fuchs, J., Antici, P., d'Humières, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C.A., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pépin, H. & Audebert, P. (2006). Laser-driven proton scaling laws and new paths towards energy increase. Nature Phys. 2, 4854.
Fukuda, Y., Faenov, A.Ya., Tampo, M., Pikuz, T.A., Nakamura, T., Kando, M., Hayashi, Y., Yogo, A., Sakaki, H., Kameshima, T., Pirozhkov, A.S., Ogura, K., Mori, M., Esirkepov, T.Z., Koga, J., Boldarev, A.S., Gasilov, V.A., Magunov, A.I., Yamauchi, T., Kodama, R., Bolton, P.R., Kato, Y., Tajima, T., Daido, H. & Bulanov, S.V. (2009). Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target. Phys. Rev. Lett. 103, 165002165005.
Gaillard, S.A., Kluge, T., Flippo, K.A., Bussmann, M., Gall, B., Lockard, T., Geissel, M., Offermann, D.T., Schollmeier, M., Sentoku, Y. & Cowan, T.E. (2011). Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets. Phys. Plasmas 18, 056710056720.
Gao, L., Wang, H., Lin, C., Zou, Y. & Yan, X. (2012). Efficient proton beam generation from a foam-carbon foil target using an intense circularly polarized laser. Phys. Plasmas 19, 083107083110.
Gauthier, M., Levy, A., D'Humieres, E., Glesser, M., Albertazzi, B., Beaucourt, C., Brelli, J., Chen, S.N., Dervieux, V., Feugeas, J.L., Nicolai, P., Tikhonchuk, V., Pepin, H., Antici, P. & Fuchs, J. (2014). Investigation of longitudinal proton acceleration in exploded targets irradiated by intense short-pulse laser. Phys. Plasmas 21, 013102013112.
Gu, Y.J., Zhu, Z., Li, X.F., Yu, Q., Huang, S., Zhang, F., Kong, Q. & Kawata, S. (2014). Stable long range proton acceleration driven by intense laser pulse with underdense plasmas. Phys. Plasmas 21, 063104063109.
Haberberger, D., Tochitsky, S., Fiuza, F., Gong, C., Fonseca, R.A., Silva, L.O., Mori, W.B. & Joshi, C. (2012). Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nat. Phys. 8, 9599.
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.C., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernández, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441444.
Henig, A., Kiefer, D., Markey, K., Gautier, D.C., Flippo, K.A., Letzring, S., Johnson, R.P., Shimada, T., Yin, L., Albright, B.J., Bowers, K.J., Fernández, J.C., Rykovanov, S.G., Wu, H.C., Zepf, M., Jung, D., Liechtenstein, V.Kh., Schreiber, J., Habs, D. & Hegelich, B.M. (2009). Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 103, 045002045005.
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyricj, K., and Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.
Jung, D., Albright, B.J., Yin, L., Gautier, D.C., Dromey, B., Shah, R., Palaniyappan, S., Letzring, S., Wu, H.-C., Shimada, T., Johnson, R.P., Habs, D., Roth, M., Fernandez, J.C. & Heglich, M. (2015). Scaling of ion energies in the relativistic-induced transparency regime. Laser Part. Beams 33, 695703.
Jung, D., Yin, L., Albright, B.J., Gautier, D.C., Letzring, S., Dromey, B., Yeung, M., Hörlein, R., Shah, R. & Palaniyappan, S. (2013). Efficient carbon ion beam generation from laser-driven volume acceleration. New J. Phys. 15, 023007023016.
Kawata, S., Nagashima, T., Takano, M., Izumiyama, T., Kamiyama, D., Barada, D., Kong, Q., Gu, Y.J., Wang, P.X., Ma, Y.Y., Wang, W.M., Zhang, W., Xie, J., Zhang, H. & Dai, D. (2014). Controllability of intense-laser ion acceleration. High Power Laser Sc. Eng. 2, 112.
Key, M.H., Akli, K., Beg, F., Chen, M.H., Chung, H.K., Freeman, R.R., Foord, M.E., Green, J.S., Gu, P., Gregori, G., Habara, H., Hatchett, S.P., Hey, D., Hill, J.M., King, J.A., Kodama, R., Koch, J.A., Lancaster, K., Lasinski, B.F., Langdon, B., MacKinnon, A.J., Murphy, C.D., Norreys, P.A., Patel, N., Patel, P., Pasley, J., Snavely, R.A., Stephens, R.B., Stoeckl, C., Tabak, M., Theobald, W., Tanaka, K., Town, R., Wilks, S.C., Yabuuchi, Y.B. & Zhang, B. (2006 a). Study of electron and proton isochoric heating for fast ignition. J. Phys. IV France 133, 371378.
Key, M.H., Freeman, R.R., Hatchett, S.P., MacKinnon, A.J., Patel, P.K., Snavely, R.A. & Stephens, R.B. (2006 b). Proton fast ignition. Fusion Sci. Technol. 49, 440452.
Kühnel, M., Fernández, J.M., Tejeda, G., Kalinin, A., Montero, S. & Grisenti, R.E. (2011). Time-resolved study of crystallization in deeply cooled liquid parahydrogen. Phys. Rev. Lett. 106, 245301245304.
Lemos, N., Martins, J.L., Dias, J.M., Marsh, K.A., Pak, A. & Joshi, C. (2012). Forward directed ion acceleration in a LWFA with ionization-induced injection. J. Plasma Phys. 78, 327331.
Loeffler, J.S. & Durante, M. (2013). Charged particle therapy – optimization, challenges and future directions. Nat. Rev. Clin. Oncol. 10, 411424.
Macchi, A., Cattani, F., Liseykina, T.V. & Cornolti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003165006.
Mackinnon, A.J., Patel, P.K., Borghesi, M., Clarke, R.C., Freeman, R.R., Habara, H., Hatchett, S.P., Hey, D., Hicks, D.G., Kar, S., Key, M.H., King, J.A., Lancaster, K., Neely, D., Nikkro, A., Norreys, P.A., Notley, M.M., Phillips, T.W., Romagnani, L., Snavely, R.A., Stephens, R.B. & Town, R.P.J. (2006). Proton radiography of a laser-driven implosion. Phys. Rev. Lett. 97, 045001045004.
Matsukado, K., Esirkepov, T., Kinoshita, K., Daido, H., Utsumi, T., Li, Z., Fukumi, A., Hayashi, Y., Orimo, S., Nishiuchi, M., Bulanov, S.V., Tajima, T., Noda, A., Iwashita, Y., Shirai, T., Takeuchi, T., Nakamura, S., Yamazaki, A., Ikegami, M., Mihara, T., Morita, A., Uesaka, M., Yoshii, K., Watanabe, T., Hosokai, T., Zhidkov, A., Ogata, A., Wada, Y. & Kubota, T. (2003). Energetic protons from a few-micron metallic foil evaporated by an intense laser pulse. Phys. Rev. Lett. 91, 215001215004.
Muramatsu, M. & Kitagawa, A. (2012). A review of ion sources for medical accelerators. Rev. Sci. Instrum. 83, 02B90902B915.
Nakamura, T., Bulanov, S.V., Esirkepov, T.Zh. & Kando, M. (2010). High-energy ions from near-critical density plasmas via magnetic vortex acceleration. Phys. Rev. Lett. 105, 135002135005.
Nickles, P.V., Ter-Avetisyan, S., Schnurer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.
Nycander, J. & Isichenko, M.B. (1990). Motion of dipole vortices in a weakly inhomogeneous medium and related convective transport. Phys. Fluids B2, 20422047.
Palmer, C.A.J., Dover, N.P., Pogorelsky, I., Babzien, M., Dudnikova, G.I., Ispiriyan, M., Polyanskiy, M.N., Schreiber, J., Shkolnikov, P., Yakimenko, V. & Najmudin, Z. (2011). Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett. 106, 014801014804.
Robinson, A.P.L., Gibbon, P., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2009). Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma Phys. Contr. Fus. 51, 024004024017.
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D., Wahlström, C.G., Zepf, M. & McKenna, P. (2007). Scaling of proton acceleration driven by petawatt-laser–plasma interactions. Nature Phys. 3, 5862.
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.
Roth, M., Jung, D., Falk, K., Guler, N., Deppert, O., Devlin, M., Favalli, A., Fernandez, J., Gautier, D., Geissel, M., Haight, R., Hamilton, C.E., Hegelich, B.M., Johnson, R.P., Merrill, F., Schaumann, G., Schoenberg, K., Schollmeier, M., Shimada, T., Taddeucci, T., Tybo, J.L., Wagner, F., Wender, S.A., Wilde, C.H. & Wurden, G.A. (2013). Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110, 044802044806.
Silva, L.O., Marti, M., Davies, J.R., Fonseca, R.A., Ren, C., Tsung, F.S. & Mori, W.B. (2004). Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 9, 015002015005.
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542549.
Yao, W., Li, B., Cao, L., Zheng, F., Huang, T., Xiao, H. & Skoric, M.M. (2014). Generation of monoenergetic proton beams by a combined scheme with an overdense hydrocarbon target and an underdense plasma gas irradiated by ultra-intense laser pulse. Laser Part. Beams 32, 583589.
Yin, L., Albright, B.J., Bowers, K.J., Jung, D., Fernández, J.C. & Hegelich, B.M. (2011). Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets. Phys. Rev. Lett. 107, 045003045006.
Yin, L., Albright, B.J., Hegelich, B.M. & Fernández, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed