Skip to main content Accessibility help
×
×
Home

Electron acceleration in underdense plasmas described with a classical effective theory

  • M. A. Pocsai (a1), S. Varró (a1) (a2) and I. F. Barna (a1) (a2)
Abstract

An effective theory of laser–plasma-based particle acceleration is presented. Here we treated the plasma as a continuous medium with an index of refraction nm in which a single electron propagates. Because of the simplicity of this model, we did not perform particle-in-cell (PIC) simulations in order to study the properties of the electron acceleration. We studied the properties of the electron motion due to the Lorentz force and the relativistic equations of motion were numerically solved and analyzed. We compared our results with PIC simulations and experimental data.

Copyright
Corresponding author
Address correspondence and reprint requests to: M. A. Pocsai, Wigner Research Centre for Physics of the Hungarian Academy of Sciences Konkoly–Thege Miklós út 29-33, H-1121 Budapest, XII, Hungary. E-mail: pocsai.mihaly@wigner.mta.hu
References
Hide All
Abramowitz, M. & Stegun, I.A. (1972). Handbook of Mathematical Functions, Applied Mathematics Series, 10 edn, vol. 55, chapter 7. Washington, DC: U.S. Government Printing Office. (Equations (7.3.1)–(7.3.4)).
Cheng, Y. & Xu, Z. (1999). Vacuum laser acceleration by an ultrashort, high-intensity laser pulse with a sharp rising edge. Appl. Phys. Lett. 74, 21162118.
Davis, L.W. (1979). Theory of electromagnetic beams. Phys. Rev. A 19, 11771179.
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.
Fonseca, R.A., Silva, L.O., Tsung, F.S., Decyk, V.K., Lu, W., Ren, C., Mori, W.B., Deng, S., Lee, S., Katsouleas, T. & Adam, J.C. (2002). OSIRIS: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In Computational Science – ICCS 2002, Lecture Notes in Computer Science, vol. 2331 (Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K. and Dongarra, J.J., Eds.), pp. 342351. Berlin, Heidelberg: Springer.
Geddes, C.G.R., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C.B., Cary, J. & Leemans, W.P. (2005). Guiding of relativistic laser pulses by preformed plasma channels. Phys. Rev. Lett. 95, 145002 (pages 4).
Gonsalves, A.J., Nakamura, K., Lin, C., Panasenko, D., Shiraishi, S., Sokollik, T., Benedetti, C., Schroeder, C., Geddes, C.G.R., van Tilborg, J., Osterhoff, J., Esarey, E., Toth, C. & Leemans, W.P. (2011). Tunable laser plasma accelerator based on longitudinal density tailoring. Nat. Phys. 7, 862866.
Kneip, S., Nagel, S.R., Martins, S.F., Mangles, S.P.D., Bellei, C., Chekhlov, O., Clarke, R.J., Delerue, N., Divall, E.J., Doucas, G., Ertel, K., Fiuza, F., Fonseca, R., Foster, P., Hawkes, S.J., Hooker, C.J., Krushelnick, K., Mori, W.B., Palmer, C.A.J., Phuoc, K.T., Rajeev, P.P., Schreiber, J., Streeter, M.J.V., Urner, D., Vieira, J., Silva, L.O. & Najmudin, Z. (2009). Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. Phys. Rev. Lett. 103, 035 002.
Lax, M., Louisell, W.H. & McKnight, W.B. (1975). From Maxwell to paraxial wave optics. Phys. Rev. A 11, 13651370.
Lifschitz, A., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.M., Burgy, F., Chambaret, J.P., Chemin, J.F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.P., Scheurer, J.N., Walton, B. & Dangor, A.E. (2002). Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 15961600.
Nakajima, K., Fisher, D., Kawakubo, T., Nakanishi, H., Ogata, A., Kato, Y., Kitagawa, Y., Kodama, R., Mima, K., Shiraga, H., Suzuki, K., Yamakawa, K., Zhang, T., Sakawa, Y., Shoji, T., Nishida, Y., Yugami, N., Downer, M. & Tajima, T. (1995). Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 74, 44284431.
Pocsai, M.A. (2014). Részecskegyorsítás lézerrel. Master's thesis. Roland Eötvös University. http://www.kfki.hu/~pocsai/diplomamunka.pdf.
Pukhov, A. & Meyer-ter Vehn, J. (2002). Laser wake field acceleration: The highly non-linear broken-wave regime. Appl. Phys. B 74, 355361.
Rosenzweig, J.B., Breizman, B., Katsouleas, T. & Su, J.J. (1991). Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. Phys. Rev. A 44, R6189R6192.
Sohbatzadeh, F. & Aku, H. (2011). Polarization effect of a chirped faussian laser pulse on the electron bunch acceleration. J. Plasma Phys. 77, 3950.
Sohbatzadeh, F., Mirzanejhad, S. & Ghasemi, M. (2006). Electron acceleration by a chirped Gaussian laser pulse in vacuum. Phys. Plasmas 13, 123108.
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.
Varró, S. (2007). Linear and nonlinear absolute phase effects in interactions of ulrashort laser pulses with a metal nano-layer or with a thin plasma layer. Laser Part. Beams 25, 379390.
Varró, S. (2014). New exact solutions of the Dirac and Klein–Gordon equations of a charged particle propagating in a strong laser field in an underdense plasma. Nucl. Instrum. Methods Phys. Res. A 740, 280283. Proc. of the First European Advanced Accelerator Concepts Workshop 2013.
Varró, S. & Farkas, G. (2008). Attosecond electron pulses from interference of above-threshold de Broglie waves. Laser Part. Beams 26, 920.
Varró, S. & Kocsis, G. (1992). Classical motion of a charged particle in the presence of a static, homogenous magnetic field and a linearly frequency shifted electromagnetic planewave. http://accelconf.web.cern.ch/AccelConf/e92/PDF/EPAC1992_0964.PDF.
Vieira, J. & Mendonça, J.T. (2014). Nonlinear laser driven donut wakefields for positron and electron acceleration. Phys. Rev. Lett. 112, 215001 (pages 5).
Wang, J., Scheid, W., Hoelss, M. & Ho, Y. (2000). Electron acceleration by intense shock-like laser pulses in vacuum. Phys. Lett. A 275, 323328.
Wang, J.X., Ho, Y.K., Feng, L., Kong, Q., Wang, P.X., Yuan, Z.S. & Scheid, W. (1999). High-intensity laser-induced electron acceleration in vacuum. Phys. Rev. E 60, 74737478.
Xia, G., Caldwell, A., Huang, C. & Mori, W.B. (2011). Simulation study on proton-driven PWFA based on CERN SPS beam. In Proc. of 2011 Particle Accelerator Conf., New York, NY, USA, pp. 301–303.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed