Skip to main content
×
Home
    • Aa
    • Aa

Electrostatic model of laser pulse absorption by thin foils

  • F. GRESCHIK (a1), L. DIMOU (a1) and H.-J. KULL (a1)
    • Published online: 09 April 2001
Abstract

The interaction of an intense laser field with a thin foil is studied within the framework of a 1D capacitor model with mobile negative point-charges. The model describes the excitation of plane electrostatic oscillations, taking into account the effects of particle–particle crossings and the presence of vacuum boundaries. It is demonstrated how vacuum excursions of particles cause wavebreaking within the foil. From wavebreaking points, charge density discontinuities are shown to propagate further along particle caustics. Absorption is calculated as a function of laser intensity and frequency. It is found that a thin overdense foil can absorb about 5 times more energy than a corresponding surface of an extended solid. This is explained by the doubling of surface charges and by electron heating in the potential well of the foil. A further absorption maximum is obtained below the plasma frequency due to resonance absorption.

Copyright
Corresponding author
Address correspondence and reprint requests to: Hans-Jeorg Kull, Laserphysik, Theoretische Physik A, RWTH Aachen, 52056 Aachen, Germany. E-mail: kull@ilt.fgh.de
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 38 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th June 2017. This data will be updated every 24 hours.

Errata