Skip to main content Accessibility help

Energy dissipation in insulators induced by swift heavy ions: A parameter study

  • O. Osmani (a1) (a2), H. Lebius (a3), B. Rethfeld (a2) and M. Schleberger (a1)

The irradiation of solids with high energy laser or particle beams has led to a deeper understanding of the relaxation processes inside the target material. However, a lot of open questions remain. In the present paper, we will examine the irradiation of the model system Xe23+ @ 93 MeV → SrTiO3 within the framework of the two-temperature-model and study the electron-phonon-coupling g and the electron diffusivity De as well as the lattice diffusivity Dp. These are crucial parameters for which no experimental data is available. Experimentally, g is very difficult to measure and therefore theoretical predictions are of great importance. With the approach presented here it is possible to determine the coupling-constant by one order of magnitude.

Corresponding author
Address correspondence and reprint requests to: B. Rethfeld, Department of Physics, University of Kaiserslautern and Research Center OPTIMAS, D-67653 Kaiserslautern, Germany. E-mail:
Hide All
Akcöltekin, E., Peters, T., Meyer, R., Duvenbeck, A., Klusmann, M., Monnet, I., Lebius, H. & Schleberger, M. (2007). Creation of multiple nanodots by single ions. Nat Nano 2, 290294.
Akcöltekin, E., Akcöltekin, S., Osmani, O., Duvenbeck, A., Lebius, H., & Schleberger, M. (2008). Swift heavy ion irradiation of SrTiO3 under grazing incidence. New J. Phys. 10, 053007.
Anisimov, Kapeliovich P. (1974). Electron-emission from surface of metals induced by ultrashort laser pulses. Sov. Phys. JETP 39, 375.
Baranov, I.A., Martynenko, Y.V., Tsepelevich, S.O. & Yavlinski, Y.N. (1988). Inelastic sputtering of solids by ions. Soviet Phys. Uspekhi 31, 1015–034.
Borghesi, M., Audebert, P., Bulanov, S., Cowan, T., Fuchs, J., Gauthier, J., Mackinnon, A., Patel, P., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven probes. Laser Part. Beams 23, 291295.
de Ligny, D. & Richet, P. (1996). High-temperature heat capacity and thermal expansion of srtio3 and srzro3 perovskites. Phys. Rev. B 53, 30133022.
Hohlfeld, J., Wellershoff, S.S., Gdde, J., Conrad, U., Jhnke, V. & Matthias, E. (2000). Electron and lattice dynamics following optical excitation of metals. Chem. Phys., 251, 237258.
Itoh, M., Wang, R., Inaguma, Y., Yamaguchi, T., Shan, Y.-J. & Nakamura, T. (1999). Ferroelectricity induced by the oxygen isotope exchange in strontium titanate perovskite. Phys. Rev. Lett. 82, 35403543.
Ivanov, D.S. & Zhigilei, L.V. (2009). The effect of pulse duration on the interplay of electron heat conduction and electron-phonon interaction: Photo-mechanical versus photo-thermal damage of metal targets. Appl. Surf. Sci. 255, 9724.
Klemens, P.G. (1960). Thermal resistance due to point defects at high temperature. Phys. Rev. 119, 507509.
Lin, Z., Zhigilei, L.V. & Celli, V. (2008). Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133/1–17.
Lindhard, J. & Scharff, M. (1961). Energy dissipation by ions in the kev region. Phys. Rev. 124, 128130.
Lisowski, M., Loukakos, U., Bovensiepen, P.A., Stahler, J., Gahl, C. & Wolf, M. (2004). Ultrafast dynamics of electron thermalization, cooling and transport effects in ru(001). Appl. Phys. A 78, 165.
Lorazo, P., Lewis, L.J. & Meunier, M. (2006). Thermodynamic path-ways to melting, ablation, and solidification in absorbing solids under pu. Phys. Rev. B 73, 134108/1–22.
Meftah, A., Costantini, J., Khalfaoui, N., Boudjadar, S., Stoquert, J., Studer, F. & Toulemonde, M. (2005). Experimental determination of track cross-section in Gd3Ga5O12 and comparison to the inelastic thermal spike model applied to several materials. Nucl. Instr. Meth. B 237, 563574.
Osmani, O., Duvenbeck, A., Akcöltekin, E., Meyer, R., Lebius, H. & Schleberger, M. (2008). Calculation of electronic stopping power along glancing swift heavy ion tracks in perovskites using ab initio electron density data. J. Phys. Cond. Mat., 20, 315001 (5pp).
Rosmej, O.N., Pikuz, S., Korostiy, S., Blaszevic, A., Brambrink, E., Fertman, A., Mutin, T., Shevelko, V., Efremov, V., Pikuz, T., Faenov, A., Loboda, P., Golubev, A. & Hoffmann, D. (2005). Radiation dynamics of fast heavy ions interacting with matter. Laser Part. Beams 23, 396–396.
Schiwietz, G., Xiao, G., Grande, P.L., Luderer, E., Pazirandeh, R. & Stettner, U. (1999). Determination of the electron temperature in the thermal spike of amorphous carbon. Europhys. Lett. 47, 384390.
Seitz, F. & Köhler, J. (1956). Displacement of atoms during irradiation. Solid State Phys. 2, 305.
Strangio, C., Caruso, A., Neely, D., Andreoli, P., Anzaloner, R., Clarker, R., Cristofari, G., Del Prete, E., Di Giorgio, G., Muhrphy, C., Ricci, C, Stevens, R. & Tolley, M. (2007). Production of multi-mev per nucleon ions in the controlled amount of matter mode (cam) by using causally isolated targets. Laser Part. Beams 25, 8591.
Toulemonde, M., Dufour, C. & Paumier, E. (1992). Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors. Phys. Rev. B 46, 1436214369.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed