Skip to main content
×
×
Home

Enhancement of line X-ray emission from iron plasma created by laser irradiation of porous targets

  • R. Fazeli (a1), M.H. Mahdieh (a1) and G.J. Tallents (a2)
Abstract

Enhancement of the line X-ray emission from iron plasma is investigated by simulating laser irradiation of both porous and solid targets. Spectral line intensities are calculated for selected lines of the iron plasma within the extreme ultra-violet lithography wavelength range 13.3–13.7 nm. The calculations show that X-ray yield in porous targets can be enhanced significantly in comparison with solid density targets. The results also show that for specified conditions of the driving laser, there are optimums conditions of the porous target in which maximum yield can be obtained.

Copyright
Corresponding author
Address correspondence and reprint requests to: R Fazeli, Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran. E-mail: rfazeli@iust.ac.ir
References
Hide All
Andreev, A.A., Limpouch, J., Iskakov, A.B. & Nakano, H. (2002). Enhancement of X-ray line emission from plasmas produced by short high-intensity laser double pulses. Phys. Rev. E 65, 026403.
Andriyash, A.V., Vikhlyaev, D.A., Gavrilov, D.S., Dmitrov, D.A., Zapysov, A.L., Kakshin, A.G., Loboda, E.A., Lykov, V.A., Magda, E.P., Politov, V.J., Potapov, A.V., Pronin, V.A., Rykovanov, G.N., Sukhanov, V.N., Tischenkov, A.S., Ugodenko, A.A. & Chefonov, O.V. (2006). X-ray laser generation under two-pulse irradiation of targets on picosecond SOKOL-P facility. Proc. 33rd EPS Conference on Plasma Phys. Rome, 19–23 June ECA 30I, P-2.009.
Attwood, D. (2007). Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications. Cambridge, UK: Cambridge University Press.
Belyaev, V.S., Vinogradov, V.I., Kurilov, A.S., Magunov, A.I., Matafonov, A.P., Pikuz, T.A., Skobelev, I.Yu. & Faenov, A.Y. (2003). On the role of prepulses during solid target heating by picosecond laser pulses. J. Exper. Theor. Physics 96, 897903.
Benredjem, D., Moller, C., Dubau, J. & Ball, T. (2006). Temporal coherence of the Ni-like palladium X-ray laser in the transient pumping scheme. Phys. Rev. A 73, 063820.
Borisenko, N.G., Bugrov, A.E., Burdonskiy, I.N., Fasakhov, I.K., Gavrilov, V.V., Goltsov, A.Y., Gromov, A.I., Khalenkov, A.M., Kovalskii, N.G., Merkuliev, Y.A., Petryakov, V.M., Putilin, M.V., Yankovskii, G.M. & Zhuzhukalo, E.V. (2008). Physical processes in laser interaction with porous low-density materials. Laser Part. Beams 26, 537543.
Chaker, M., La Fontaine, B., Cote, C.Y., Kieffer, J.C., Pepin, H., Talon, M.H., Enright, G.D. & Villeneuve, D.M. (1992). Laser plasma sources for proximity printing or projection X-ray lithography. J. Vac. Sci. Technol. B 10, 3239.
Chaker, M., Pepin, H., Bareau, V., Lafontaine, B., Toubhans, I., Fabbro, R. & Faral, B. (1988). Laser plasma X-ray sources for microlithography. J. Appl. Phys. 63, 892899.
Chakera, J.A., Kumbhare, S.R. & Gupta, P.D. (1998). Characterization of X-ray contact microscopic imaging in keV spectral region using laser produced plasmas. J. X-ray Sci. Technol. 8, 135143.
Chakera, J.A., Kumbhare, S.R., Naik, P.A. & Gupta, P.D. (2007). Narrow band X-ray emission in the water-window spectral region from a laser heated gold copper mix-Z plasma. Appl. Phys. B 86, 519522.
Chung, H.K., Chen, M.H., Morgan, W.L., Ralchenko, Y. & Lee, R.W. (2005). FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Ener. Density Physics 1, 312.
Ciobanu, S.S., Negutu, C., Stafe, M., Vladoiu, I., Pais, V., Stancalie, V. & Puscas, N.N. (2008). Spectroscopic studies of laser induced aluminum and copper plasmas in air. Proc. 35th EPS Conference on Plasma Phys. Hersonissos 9-13 June ECA 32D, 144.
Daido, H. (2002). Review of soft X-ray laser researches and developments. Rep. Prog. Phys. 65, 1513.
Demir, A., Kenar, N., Goktas, H. & Tallents, G.J. (2004). Modelling of Ne-like Copper X-ray laser driven by 1.2 ps short pulse and 280 ps background pulse configuration. Czech. J. Phys. 54, C344C348.
Fazeli, R., Mahdieh, M.H. & Tallents, G.J. (2010). Numerical study of picosecond soft X-ray enhancement from porous targets irradiated by double laser pulses. Phys. Lett. A 374, 29362941.
Ganeev, R.A., Chakera, J.A., Raghuramaiah, M., Sharma, A.K., Naik, P.A. & Gupta, P.D. (2001). Experimental study of harmonic generation from solid surfaces irradiated by multipicosecond laser pulses. Phys. Rev. E 63, 026402.
Grobman, W.D. (1983). Handbook of Synchrotron Radiation. New York: Elsevier Science.
Hatanaka, K., Ono, H. & Fukumura, H. (2008). X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses. Appl. Phys. Lett. 93, 064103.
Healy, S.B., Cairns, G.F., Lewis, C.L.S., Pert, G.J. & Plowes, J.A. (1995 a). A computational investigation of the neon-like germanium collisionally-pumped laser considering the effect of prepulses. IEEE 1, 949.
Healy, S.B., Djaoui, A., Holden, P.B., Pert, G.J. & Rose, S.J. (1995 b). A comparison of time-dependent ionization models for laser-produced plasmas. J. Phys. B 28, 1381.
Holden, P.B., Healy, S.B., Lightbody, M.T.M., Pert, G.J., Plowes, J.A., Kingston, A.E., Robertson, E., Lewis, C.L.S. & Neely, D. (1994). A computational investigation of the neon-like germanium collisionally pumped laser. J. Phys. B 27, 341.
Holstein, T. (1947). Imprisonment of Resonance Radiation in Gases. Phys. Rev. 72, 1212.
Holstein, T. (1951). Imprisonment of Resonance Radiation in Gases. II. Phys. Rev. 83, 1159.
Jin, F., Zeng, J. & Yuan, J. (2004). A detailed simulation for the transmission spectrum of hot aluminum plasma. Phys. Plasmas 11, 4318–22.
Jin, F., Zeng, J. & Yuan, J. (2008). Detailed diagnostics of a laser produced aluminum plasma by the Kα satellites. JQSRT 109, 27072714.
Kuba, J., Foord, M., Izumi, N., Key, M.H., Koch, J.A., Moon, S., Park, H.S., Phillips, T., Remington, B.A., Snavely, R.A., Wilks, S.C., Zhang, B., Akli, K., King, J., Theobald, W., Stoeckl, C., Heathcote, R. & Neely, D. (2005). Effects of Prepulse and Incidence Angle on High-Energy K-alpha Production. Proc. 32nd EPS Conference on Plasma Phys. Tarragona, 27 June – 1 July ECA 29C, D-4.001.
Kulcsar, G., Almawlawi, D., Budnik, F.W., Herman, P.R., Moskovits, M., Zhao, L. & Marjoribanks, R.S. (2000). Intense oicosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets. Phys. Rev. Lett. 84, 5149.
Lang, K.R. (1999). Astrophysical Formulae: Radiation, Gas Processes, and High Energy Physics. Enlarged: Springer.
Lawson, K.D. & Peakock, N.J. (1980). The analysis of the n = 2-2 transitions in the XUV spectra of Cr to Ni. J. Phys. B: Atom. Molec. Phys. 13, 33133334.
Lawson, K.D., Peakock, N.J. & Stamp, M.F. (1981). Allowed and forbidden n = 2-2 transitions of the elements Ti, Cr, Fe, Co and Ni in Tokamak discharges. J. Phys. B: At. Mol. Phys. 14, 19291952.
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.
Loupias, B., Perez, F., Benuzzi-Mounaix, A., Ozaki, N., Rabec, M., Gloahec, L.E., Pikuz, T.A., Faenov, A.Y., Aglitskiy, Y. & Koenig, M. (2009). Highly efficient, easily spectrally tunable X-ray backlighting for the study of extreme matter states. Laser Part. Beams 27, 601609.
Mahdieh, M.H., Fazeli, R. & Tallents, G.J. (2009). Soft X-ray enhancement from a porous nano-layer on metal targets irradiated by long laser pulses. J. Phys. B: At. Mol. Opt. Phys. 42, 125602.
Moscicki, T., Hoffman, J. & Szymanski, Z. (2008). Net emission coefficients of low temperature thermal iron-helium plasma. Optica Applicata 38, 365373.
Murnane, M.M., Kapteyn, H.C., Gordon, S.P., Bokor, J.Glytsis, E.N. & Falcone, R.W. (1993). Efficient coupling of high – intensity subpicosecond laser pulses into solids. Appl. Phys. Lett. 62, 1068.
Nagel, D.J., Whitlock, R.R., Greig, J.R., Pechacek, R.E. & Peckerar, M.C. (1978). Laser-plasma source for pulsed X-ray lithography. Proc. SPIE 135, 46.
Nakano, H., Andreev, A.A. & Limpouch, J. (2004). Femtosecond X-ray line emission from multilayer targets irradiated by short laser pulses. Appl. Phys. B 79, 469476.
Neureuther, A.R. (1980). Synchrotron Radiation Research. (Winick, H. and Doniach, S. eds.). New York: Plenum Press.
Nishikawa, T., Nakano, H., Oguri, K., Uesugi, N., Nakano, M., Nishio, K. & Masuda, H. (2001). Nanocylinder-array structure greatly increases the soft X-ray intensity generated from femtosecond-laser-produced plasma. Appl. Phys. B 73, 185.
Nishikawa, T., Nakano, H., Oguri, K., Uesugi, N., Nishio, K. & Masuda, H. (2004). Nanohole-array size dependence of soft X-ray generation enhancement from femtosecond-laser-produced plasma. J. Appl. Phys. 96, 7537.
Nishikawa, T., Nakano, H., Uesugi, N. & Serikawa, T. (1998). Porous layer effects on soft X-ray radiation emitted from a plasma generated by 130-fs laser pulses irradiating a porous silicon target. Appl. Phys. B 66, 567570.
Pert, G.J. (1983). The hybrid model and its application for studying free expansion. J. Fluid Mechan. 131, 401426.
Rajeev, P.P., Taneja, P., Ayyub, P., Sandhu, A.S. & Kumar, G.R. (2003). Metal nanoplasmas as bright sources of hard X-ray pulses. Phys. Rev. Lett. 90, 115002.
Rajeev, P.P., Ayyub, P., Bagchi, S. & Kumar, G.R. (2004). Nanostructures, local fields, and enhanced absorption in intense light-matter interaction. Opt. Lett. 29, 2662/4.
Schriever, G., Mager, S., Naweed, A., Engel, A., Bergmann, K. & Lebert, R. (1998). Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy. Appl. Opt. 37, 12431248.
Son, J., Cho, M., Kim, D., Ahn, B. & Kim, J. (2007). Prepulse effect on laser-induced water-window radiation from a liquid nitrogen jet. Appl. Phys. Lett. 90, 261502.
Sugar, J. & Rowan, W.L. (1995). Improved wavelengths for prominent lines of Fe XX to Fe XXIII. J. Opt. Soc. Am. B 12, 14031405.
Tomie, T., Kondo, H., Shimizu, H. & Lu, P. (1997). X-ray photoelectron spectroscopy with a laser plasma source. Proc. SPIE 3157, 176.
Warlaumont, J.M. & Maldonado, J.R. (1981). Stationary Anode X-ray Source for the Evaluation of Conventional Resists. J. Vac. Sci. Technol. 19, 1200.
Watanabe, T., Kinoshita, H., Sakaya, N., Shoki, T. & Lee, S.Y. (2005). Novel evaluation system for extreme ultraviolet lithography resist in new SUBARU. Jpn. J. Appl. Phys. 44, 55565559.
Yang, J., Zhang, J., Ding, Y., Peng, Y., Li, J., Zheng, Z., Yang, G., Zhang, W. & Li, J. (2003). K-shell transition absorption measurement of radiatively heated Al plasma. Phys. Plasmas 10, 4881/5.
Yulin, S., Benoit, N., Feigl, T. & Kaiser, N. (2006). Interface-engineered EUV multilayer mirrors. Microelectronic Engineering 83, 692694.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed