Skip to main content Accessibility help

Fusion energy using avalanche increased boron reactions for block-ignition by ultrahigh power picosecond laser pulses

  • Heinrich Hora (a1), Georg Korn (a2), Lorenzo Giuffrida (a2), Daniele Margarone (a2), Antonino Picciotto (a3), Josef Krasa (a2), Karel Jungwirth (a4), Jiri Ullschmied (a4), Paraskevas Lalousis (a5), Shalom Eliezer (a6) (a7), George H. Miley (a8), Stavros Moustaizis (a9) and Gérard Mourou (a10)...


Exceptionally high reaction gains of hydrogen protons measured with the boron isotope 11 are compared with other fusion reactions. This is leading to the conclusion that secondary avalanche reactions are happening and confirming the results of high-gain, neutron-free, clean, safe, low-cost, and long-term available energy. The essential basis is the unusual non-thermal block-ignition scheme with picosecond laser pulses of extremely high powers above the petawatt range.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Fusion energy using avalanche increased boron reactions for block-ignition by ultrahigh power picosecond laser pulses
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Fusion energy using avalanche increased boron reactions for block-ignition by ultrahigh power picosecond laser pulses
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Fusion energy using avalanche increased boron reactions for block-ignition by ultrahigh power picosecond laser pulses
      Available formats


Corresponding author

Address correspondence and reprint requests to: Heinrich Hora, Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia. E-mail:


Hide All
Banati, R.Hora, H., Lalousis, P. & Moustaizis, S. (2014). Ultrahigh laser acceleration of plasma blocks with ultrahigh ion density for fusion and hadron therapy. J. Intense Pulsed Laser Appl. Adv. Phys. 4, 1116.
Belyaev, V.S., Matafonov, A.P., Vinogradov, V.I., Krainov, V.P., Lisitsa, V.S., Roussetski, A.S., Ignatyev, G.N. & Andrianov, V.P. (2005). Observation of neutronless fusion reactions in picosecond laser plasmas. Phys. Rev. E 72, 026406.
Betti, R., Chou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Sodolov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.
Bobin, J.-L. (1974). Nuclear fusion reactions in fronts propagating in solid DT. (Schwarz, H. and Hora, H., Eds.) Laser Interaction and Related Plasma Phenomena, Vol. 4B, p. 465. New York: Plenum Press.
Boreham, B.W., Newman, D.S., Höpfl, R. & Hora, H. (1995). Depressed photoemission from Görlich cathodes at high laser light intensities. J. Appl. Phys. 78, 58485850.
Butler, D. (1996). Now Europe's physicists seek shift in strategic fusion research. Nature 380, 655.
Campbell, E.M. (2006). High intensity laser plasma interaction and application to inertial fusion and high energy density physics D.Sc. (Doctor of Science) Thesis. Sydney, Australia: University of Western Sydney, 723 p.
Chu, M.S. (1972). Thermonuclear reactions waves at high densities. Phys. Fluids 15, 412.
Cicchitelli, L., Hora, H. & Postle, R. (1990). Longitudinal field components of laser beams in vacuum. Phys. Rev. A 41, 37273732.
Daido, H., Miki, F., Mima, K., Fujita, M., Sawaki, K., Fujita, H., Kitagawa, Y., Nakai, S. & Yamanaka, C. (1986). Generation of a strong magnetic field by an intense CO2-laser pulse. Phys. Rev. Lett. 56, 846.
Davidson, R. (2001). Nonneutral Plasmas. Singapore: World Scientific.
Eliezer, S., Nissim, N., Martinez Val, J.M., Mima, K. & Hora, H. (2014). Double layer acceleration by laser radiation. Laser Part. Beams 32, 211217.
Feynman, R. (1987). see H. Hora, Laser Plasma Physics, SPIE Books, Belllingham WA 2000, Section 6.3; Hora. H. Laser and Particle Beams 29, 275 (2011).
Földes, I.B., Bakos, J.S., Gal, K., Juhasz, Y., Kedves, M.A., Koscis, G., Szatmari, S. & Veres, G. (2000). Properties of high Harmonics generation by UV laser pulses on solid surfaces. Laser Phys. 10, 264.
Fortov, V.E. & Lakubov, (1998). Physics of Nonideal Plasmas. Singapore: World Scientific.
Fujioka, S., Zhang, Z.Ishihara, K., Shigemori, K., Hironaka, Y., Johzaki, T., Sunahara, A., Yamamoto, N., Nakashima, H., Watanabe, T., Shiraga, H., Nishimura, H. & Azechi, H. (2013). Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Sci. Rep. 3, 11701176.
Gulkis, S. (1987). In Encyclopaedia of Physical Science and Technology (Meyers, R.A., Ed.), Vol. 11, p. 644. San Diego: Academic Press, Eq. (33).
Haan, S. (2010). see in Yuandi, Li, Editor, Nuclear Power without radioactivity Highlights in Chemical Technology, 24 March 2010 Royal Soc. Chemistry, London; or A. Calilasseria. Physics. Rational Skepticism Forum, see google “boron fusion”, (22 April 2010)
Hohla, K. & Kompa, K.L. (1973). Gigawatt photochemical iodine laser. Appl. Phys. Lett. 22, 7780.
Hora, H. (1969). Nonlinear confining and deconfining forces associated with the interaction of laser radiation with plasma. Phys. Fluids 12, 182191.
Hora, H. (1981). Physics of Laser Driven Plasma. New York: Wiley, figures 10.18 a & b.
Hora, H. (1985). The transient electrodynamic forces at laser–plasma Interaction. Phys. Fluids 28, 37063707.
Hora, H. (2000). Laser Plasma Physics. Belllingham, WA: SPIE Books.
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond–terawatt laser plasma interaction II. Czech. J. Phys. 53, 199217.
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser Part. Beams 29, 207222.
Hora, H. (2011). Distingished celebration for Professor George H. Miley by the University of Illinois, Urbana Illinois, USA. Laser Part. Beams 29, 275278.
Hora, H. (2013 a). Extraodrinary jump of increasing laser fusion gains experienced at volume ignition for combination with NIF experiments. Laser Part. Beams 31, 229232.
Hora, H. (2013 b). Neutron-free production of nuclear fusion reactions without additional fields. German Patent Application 10 2013 016 306.6
Hora, H. (2014). Permission for open use of German Patent application 10 2013 016 305.6. 15 Jan.
Hora, H., Badziak, J., Boody, F.P., Höpfl, R., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L., Parys, P., Perina, V., Pfeifer, M., Rohlena, K., Skala, J., Ullschmied, J., Wolowski, J. & Woryna, E. (2002 a). Effects of ps and ns. laser pulses for giant ion source. Opt. Commun. 207, 333337.
Hora, H., Badziak, J., Read, M.N., Li, Y.-T., Liang, T.-J., Liu, H., Sheng, Z.-M., Zhang, J., Osman, F., Miley, G.H., Zhang, W., He, X., Peng, H., Osman, F., Glowacz, S., Jablonski, S., Wolowski, S., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven beams of very high intensity. Phys. Plasmas 14, 072701/1–7.
Hora, H., Castillo, R., Clark, R.G., Kane, E.L., Lawrence, V.E., Miller, R.D.C., Nicholson-Florence, M.F., Novak, M.M., Ray, P.S., Shepanski, J.R. & Tsivinsky, I. (1978). Calculation of intertal confienement fusion gains using a collective model for reahat, bremsstrahlung and fuel depletion for higly efficient elecgtrodynamic laser compressions. Plasma Phys. Control. Nucl. Fusion Res. Innsbruck 1978 Nucl. Fusion (Suppl. 1979) 3, 237246.
Hora, H. & Kelly, J.C. (2009). Nuclear energy without radioactivity. Austr. Phys. 46, 111113.
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers in nonlinear force produced cavitons at laser-plasma interaction. Phys. Rev. Lett. 53, 16501652.
Hora, H., Lalousis, P., Eliezer, S., Miley, G.H., Moustaizis, S. & Mourou, G. (2014 b). New option for solving the climatic problems with non-thermal laser driven boron fusion and ultrahigh magnetic fields. arXiv 1412.4190, see also N. Byrne, E. Hunt and M. Beilharz (2014). News Release Austr. Physics Congress December 2014, .
Hora, H., Lalousis, P., Guiffrida, L., Margarone, D., Korn, G., Eliezer, S., Miler, G.H., Moustaizis, S. & Mourou, G. (2015) Petawatt laser pulses for proton-boron high gain fusion with avalanche reactions excluding problems of nuclear radiation. SPIE Proceedings 9515, 951518/1–15.
Hora, H., Lalousis, P. & Moustaizis, S. (2014 a). Fiber ICAN laser with exawatt–picosecond pulses for fusion without nuclear radiation problems. 32, 6368.
Hora, H., Lalousis, P., Moustaizis, S., Földes, I., Miley, G.H., Yang, X., He, X.T., Eliezer, S. & Martinez-Val, J.-M. (2012 a). Shock Studies in Nonlinear Force Driven Laser Fusion with Ultrahigh Plasma Block Acceleration. IAEA Proc. Fusion Energy, San Diego October 2012. Paper IFE/P6–03, 8 pages (IAEA Vienna 2013)
Hora, H., Malekynia, B., Ghoranneviss, M., Miley, G.H. & He, X. (2008). Twenty times lower ignition thresholds for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Lett. 93, 011101/1–3.
Hora, H., Miley, G.H., Ghoranneviss, M., Malekynia, B. & Azizi, N. (2009) Laser-optical path to nuclear energy without radioactivity: fusion of hydrogen-boron by nonlinear force driven plasma blocks. Opt. Commun. 283, 41244126.
Hora, H., Miley, G.H., Ghorannviss, M., Malekynia, H., Azizi, N. & He, X-T. (2010). Fusion energy without radioactivity: laser ignition of solid hydrogen-boron(11) fuel. Energy Environ. Sci. 3, 479486.
Hora, H., Peng, H.-S., Zhang, W. & Osman, F. (2002 b). New skin depth interaction by ps-TW laser pulses and consequences for fusion energy. SPIE Proc. 4914, 4248.
Hora, H., Sadighi-Bonabi, R., Yazdani, R., Afaideh, A., Nafari, F. & Ghoranneviss, M. (2012 b). Effect of quantum correction of the acceleration and delayed heating of plasma blocks. Phys. Rev. E 85, 036404/1–6.
Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., Dewald, E.L., Dittrich, T.R., Döppner, T., Hinkel, D.E., Berzak Hopkins, L.F., Kline, J.L., Le Pape, S., Ma, T., MacPhee, A.G., Milovich, J.L., Pak, A., Park, H.-S., Patel, P.K., Remington, B.A., Salmonson, J.D., Springer, P.T. & Tommasini, R. (2014). Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343348.
Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P. & Ullschmied, J. (2001). The prague asterix laser system phys. Plasmas 8, 24952501.
Kanngiesser, K.W., Huang, D.H. & Lips, H. (1994). Highvoltage direct current transmission – Systems and Planning. Siemens monographs Munich, EV HA 7.
Korn, G., Margarone, D. & Picciotto, A. (2014). Boron-Proton Nuclear Fusion Enhancement Induced in Boron-doped Silicon Targets by Low-contrast Pulsed Lasers. IZEST ELI-NP Conf. Paris, 17–18 September 2014.
Kouhi, M., Ghoraneviss, M., Malekynia, B., Hora, H., Miley, G.H., Sari, A.H., Azizi, N. & Razavipourm, S.S. (2011). Resonance effect for strong increase of fusion gains at thermal compression for volume ignition of Hydrogen Boron-11. Laser Part. Beams 29, 125.
Krasa, J., Klier, D., Velyhan, A., Margarone, D., Krousky, E., Jungwirth, K., Skala, J., Pfeifer, M., Kravarik, J., Kubes, P., Rezak, K. & Ullschmied, J. (2013). Observation of repeitive bursts in emission of fast ions and and neutrons in sub-nanosecond laser-solid experiemnts. Laser Part. Beams 31, 395401.
Labaune, C., Deprierraux, S., Goyon, S., Loisel, C., Yahia, G. & Rafelski, J. (2013). Fusion reactions initiated by laser acceleratedparticle beams in laser produced plasmas. Nat. Commun. 4, 2506.
Lalousis, P. & Hora, H. (1983). First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction. Laser Part. Beams 1, 283304.
Lalousis, P., Hora, H. & Moustaizis, S. (2014). Optimized boron fusion with magnetic trapping by laser driven shock initiation at nonlinear force driven ultrahigh acceleration. Laser Part. Beams 32, 409411.
Lalousis, P., Hora, H., Eliezer, S., Martnez-Val, J.-M., Moustaizis, S., Miley, G.H. & Mourou, G. (2013). Shock mechanisms by ultrahigh laser accelerated plasma blocks in solid density targets for fusion. Phys. Lett. A 377, 885888.
Lalousis, P., Moustaizis, S., Hora, H. & Miley, G.H. (2015). Kilotesla magnetic assisted fast laser ignited Boron-11 hydrogen fusion with nonlinear force driven ultrahigh accelerated plasma blocks. J. Fusion Energy 34, 6267.
Li, R.X., Liang, X.Y., Chu, Y.X., Gan, Z.B., Lu, H.H., Yu, L.H., Yin, D.J., Leng, Y.X., Lu, X.M., Wang, C. & Xu, Z.Z. (2015). Progress towards a 10 PW ultraintense laser facility: Demonstration of 5 PW high gain large aperture Ti:saphhire amplifier. 4th Advanced Lasers and Photon Sources (ALPS′15), Yokohama, Japan April 22–24.
Malekynia, B. & Razipur, S.S. (2013). Internal propagation of fusion flame with shock strong of laser driven plasma block for advanced nuclear fuels ignition. Chin. Phys. B22, 055202.
Margarone, D., Picciotto, A., Velyhan, A., Krasa, J., Kucharik, M., Mangione, A., Szydlowsky, A., Malinowska, A., Bertuccio, G., Shi, Y., Crivellari, M., Ullschmied, J., Bellutti, P. & Korn, G. (2015). Advanced scheme for high-yield laser driven nuclear reactions. Plasma Phys. Control. Fusion 57, 014030.
Mitchell, W. (2000). Keynote lecture at the ECLIM conference Schliersee/Germany.
Mourou, G., Barty, C.P.L. & Perry, M.D. (1998). Ultrahigh-intensity lasers: physics of the extreme on a tabletop. Phys. Today 51, 2230.
Mourou, G., Brocklesby, B., Tajima, T. & Limpert, L. (2013). The future is fibre accelerators. Nat. Photonics 7, 258261.
Moustaizis, S., Lalousis, P. & Hora, H. (2013). A LIF scheme for HiPER application based on the combination of ultrahigh laser nonlinear force driven plasma blocks and the relativistic acceleration of ion blocks. In High Power, High Energy and Hig-intensity Laser Technology and Research using Extreme Light: Entering New Frontiers with Petawatt-class Lasers. (Hein, J., Korn, G. and Silva, L.O., Eds.). Proceedings of SPIE Vol. 8780, paper 878029/1–10.
Nevins, W.M. & Swain, R. (2000). The thermonuclear fusion rate coefficients for p-11B reactions. Nucl. Fusion 40, 865.
Norreys, P.A., Fews, A.P.Beg, F.N., Bell, A.R., Dangor, A.E., Lee, P., Nelson, M.B., Schmidt, H., Tatarakis, M. & Cable, M.D. (1998). Neutron production from picosecond laser irradiation of deuterated targets at intensities of 1019 W/cm2 Plasma Phys. Control. Fusion 40, 175.
Oliphant, M.L.E., Harteck, P. & Rutherford, L. (1934). 100 kilovolt discharges in deuterium plasmas. Proc. R. Soc. Lond. A 144, 692714.
Oliphant, M.L.E. & Rutherford, L. (1933). Experiments on the transmutations of elements by protons. Proc. R. Soc. Lond. A 141, 259281.
Paterson, A. (2015). Latest developments on small modular reactors. Bull. R. Soc. NSW No. 385, 4.
Picciotto, A., Margarone, D., Velyhan, A., Bellini, P., Krasa, J., Szydlowski, A., Bertuccio, G., Shi, Y., Margarone, A., Prokupek, J., Malinowska, A., Krouski, E., Ullschmied, J., Laska, L., Kucharik, M. & Korn, G. (2014). Boron-proton nuclear-fusion enhancement induced in boron-doped silicon targets by low-contrast pulsed laser. Phys. Rev. X 4, 031030.
Rostoker, N., Binderbauer, M.W. & Monkhorst, H.J. (1997). Colliding beam fusion reactor. Science 278, 14191422.
Santos, J.J., Bailly-Gandvoux, M., Giuffrida, L., Forester-Colleoni, P., Fuijoka, S., Zang, Z., Korneev, Ph, Boullaud, R., Dorand, S., Batani, D., Chervrrot, M., Cross, J., Crowston, R., Dubois, J.-L., Gazave, J., Greofri, G., d'Humieres, E., Hulin, S., Ishihara, K., Kojima, S., Loyez, E., Marques, J.-R., Nicolai, Ph., Peyrusse, O., Poye, A., Raffestin, D., Ribolzi, J., Roth, M., Schaumann, G., Serred, F., Tikhonchuk, V.T., Vacar, Ph. & Woolsley, N. (2015). Laser-driven platform for generation and characterization of strong quasi-staticmagnetic fields. Phys. Plasmas arXiv 1503.00247/1–16.
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas. Phys. Plasmas 3, 47124716.
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219222.
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.
Tahir, N.A. & Hoffmann, D.H.H. (1997). Development of advanced inertial fusion targets. Laser Part. Beams 15, 575587.
Weaver, T., Zimmerman, G. & Wood, L. (1973). Exotic CTR Fuels: Non-thermal Effects and Laser Fusion Applications. Lawrence Livermore National Laboratory Report UCRL – 74938.
Yu, W., Xu, H., He, F., Yu, M.Y., Ishoguro, S., Zhang, J. & Wong, A.Y. (2005). Direct acceleration of solid-density plasma bunch by ultraintense laser. Phys. Rev. E 72, 046401.
Zhang, M., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wang, L., Feng, B.L., Zhang, D.F., Tang, X.W. & Zhang, J. (1998). Effects of a prepulse on γ-ray radiation produced by a femtosecond laser with only 5-mJ energy. Phys. Rev. E 57, 37463748.


Related content

Powered by UNSILO

Fusion energy using avalanche increased boron reactions for block-ignition by ultrahigh power picosecond laser pulses

  • Heinrich Hora (a1), Georg Korn (a2), Lorenzo Giuffrida (a2), Daniele Margarone (a2), Antonino Picciotto (a3), Josef Krasa (a2), Karel Jungwirth (a4), Jiri Ullschmied (a4), Paraskevas Lalousis (a5), Shalom Eliezer (a6) (a7), George H. Miley (a8), Stavros Moustaizis (a9) and Gérard Mourou (a10)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.