Skip to main content Accessibility help
×
×
Home

Hard X-ray emission in laser-induced vacuum discharge

  • YU.V. KOROBKIN (a1), I.V. ROMANOV (a1), A.A. RUPASOV (a1), A.S. SHIKANOV (a1), P.D. GUPTA (a2), R.A. KHAN (a2), S.R. KUMBHARE (a2), A. MOORTI (a2) and P.A. NAIK (a2)...

Abstract

The dynamics of fast laser-induced vacuum discharge, with a rather small value of amplitude of current (≤ 10 kA), as well as the voltage and energy of the capacitor bank (≤ 20 kV and 20 J, respectively), have been investigated. It has been experimentally demonstrated that the initiations conditions determined by the energy and duration of the laser radiation, fundamentally determine the dynamics of the discharge. Two types of space and time separated plasma instabilities are revealed. It was found that the first of instabilities occurs at the initial stage of the discharge and is caused by a pinch structure, which takes place in front of a cathode jet extending in vacuum. The second type of instabilities arises at the top or recession of the current and is accompanied by the generation of hard (energy ≥100 keV) bremsstrahlung X-ray radiation from the anode area. The excess energy of the hard components of radiation over the potential of the current source is associated with the effects of plasma-erosive breaking.

Copyright

Corresponding author

Address correspondence and reprint requests to: A. A. Rupasov, P. N. Lebedev Physical Institute, 53 Leninsky prospect, Moscow, 119991, Russia. E-mail: rupasov@sci.lebedev.ru

Footnotes

Hide All
This paper was presented at the 28th ECLIM conference in Rome, Italy.

Footnotes

References

Hide All

REFERENCES

Artamonov, M.F., Krasov, V.I. & Paperny, V.I. (2002). Generation of ultrasoft X-ray emission from cathode jet of a vacuum discharge. Russian J. Prikladnay Fizika 5, 6974.
Barentgolts, S.A., Mesyats, G.A. & Perelshtein, E.A. (2000). The model of collective accelerated ions in vacuum discharge on basis of conception of a deep potential well. Russian J. JETF. 91, 11761183.
Bugaev, A.S., Vizir, A.V., Gushenets, V.I., Nikolaev, A.G., Oks, E.M., Yushkov, G.Y., Burachevsky, Y.A., Burdovitsin, V.A., Osipov, I.V. & Rempe, N.G. (2003). Current status of plasma emission electronics: II. Hardware. Laser Part. Beams 21, 139156.
Erokhin, A.A., Kisinets, A.S., Korobkin, Yu.V., Romanov, I.V., Romanova, V.M., Rupasov, A.A., Shikanov, A.S. (2001). Analysis of caracteristic X-ray generation induced by laser plasma electrons accelerated by an electric field. Russian J. JETF. 92, 9981003.
Filippov, N.V. (1983). Experiments on plasma focus in the Kurchatov Institute of Atomic Energy. Russian J. Fizika Plazmy. 9, 2544.
Gushenets, V.I., Oks, E.M., Yushkov, G.Y. & Rempe, N.G. (2003). Current status of plasma emission electronics: I. Basic physical processes. Laser Part. Beams 21, 123138.
Kishinets, A.S., Korobkin, Yu.V., Romanov, I.V., Rupasov, A.A., Shikanov, A.S., Moorti, A., Naik, P.A. & Gupta, P.D. (2004). Stabilization of X-ray source based on the vacuum diode with the laser-plasma cathode. Russian J. Fizika Plazmy. 30, 263268.
Krinberg, I.A. & Paperny, V.L. (2002). Pinch effect in vacuum arc plasma sources under moderate discharge currents J. Phys. D. Appl. Phys. 35, 549562.
Korobkin, Yu.V., Romanov, I.V., Rupasov, A.A., Fedin, D.A., Shikanov, A.S., Moorti, A., Raghuramiah, M., Upadhya, J., Kumbhare, S.R., Sailaja, S., Arora, V., Naik, P.A. & Gupta, P.D. (1999). Investigation of laser driven vacuum diode X-ray source of photon energy ∼ 5 keV. Laser Part. Beams 17, 499507.
Panchenko, A.N., Orlovskii, V.M. & Tarasenko, V.F. (2003). Efficient e-beam and discharge initiated nonchain HF (DF) lasers. Laser Part. Beams 21, 223242.
Romanov, I.V., Korobkin, Yu.V., Kishinets, A.S., Rupasov, A.A., Shikanov, A.S., Moorti, A., Naik, P.A. & Gupta, P.D. (2003). The features of electrical current in the X-ray source based on the vacuum diode with the laser-plasma cathode. Proceedings of SPIE 5228, 637642.
Vogel, V. & Skvortsov, V.A. (1997). Plasma parameters within the cathode spot of laser-induced vacuum arcs: experimental and theoretical investigations. IEEE Trans. Plasma Sci. 25, 553563.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed