Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T07:01:50.565Z Has data issue: false hasContentIssue false

Inertial confinement fusion fast ignition with ultra-relativistic electron beams

Published online by Cambridge University Press:  22 December 2010

C. Deutsch*
Affiliation:
LPGP Universsité Paris-Sud(UMR-CNRS 8578), Orsay, France
J.-P. Didelez
Affiliation:
IPN, Université Paris-Sud(UMR-CNRS 8608), Orsay, France
*
Address correspondence and reprint requests to: C. Deutsch, LPGP Universsité Paris-Sud(UMR-CNRS 8578), Bât. 210, F-91405 Orsay, France. E-mail: Claude.deutsch@u-psud.fr

Abstract

Inertial confinement fusion fast ignition at very high relativistic electron beam energy is systematically explored through a possible combination of various stopping mechanisms including strong Langmuir turbulence, elastic, and inelastic electron interactions with target particles. A specific attention is given to final state interaction through catalysis by negative pion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bret, A. & Deutsch, C. (2005). Hierarchy of Beam plasma instabilities up to high densities for fast iginition scenario. Phys. Plasmas 12, 082704.Google Scholar
Breunlich, W.H., Kammel, P., Cohen, J.S. & Leon, M. (1989). Muon-Catalyzed fusion. Ann. Rev. Nucl. Part. Sci. 39, 311356.Google Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, L. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 24832486.CrossRefGoogle ScholarPubMed
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1997). Interaction physics of the fast ignitor concept. Laser Part. Beams 15, 557564.CrossRefGoogle Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (2000). Interaction physics of the ignitor concept, Erratum. Phys. Rev. Lett. 85, 11402240.Google Scholar
Deutsch, C. & Tahir, N.A. (1992). Fragmentation and stopping of heavy cluster ions in a lithium target. Application to target implosion. Phys. Fluids B 4, 37353746.Google Scholar
Harley, D. (1992). Regeneration and stopping of (alpha-µ)+ on a degenerate plasma. Phys. Rev. A 45, 89818983.CrossRefGoogle ScholarPubMed
Hofstadter, D.R. (1963). Nuclear and Nucleon Structure. New York: W.A. Benjamin.Google Scholar
Jandel, M., Froelich, P., Larson, C. & Stodden, C.D. (1989). Reactivation of alpha-mu in muon-catalyzed fusion under plasma conditions. Phys. Rev. A 40, 27992802.Google Scholar
Kar, S. & Ho, Y.K. (2008). Bound states and resonance states of the plasma-embedded td mu and dd mu molecular ions. Eur. Phys. J.D. 48, 157165.Google Scholar
Kimura, S. & Bonasera, A. (2004). Chaos driven fusion enhancement factor at astrophysical energies. Phys. Rev. Lett. 93, 262502.Google Scholar
Kodama, R., Shiraga, H., Shigemori, K., Toyama, Y., Fujioka, S., Azechi, H., Fujiita, H., Habara, H., Hall, T., Izawa, Y., Jitsuno, T., Kitagawa, Y., Krushelnick, K.M., Lancaster, K.L., Mima, K., Nagai, K., Nakai, M., Nishimura, H., Norimatsu, T., Norreys, P.A., Sakabe, S., Tanaka, K.A., Youssef, A. & Zepf, M. (2002). Nuclear fusion - Fast heating scalable to laser fusion ignition. Nat. 418, 933934.Google Scholar
Malkin, V.M. & Fisch, N.J. (2002). Collective deceleration of relativistic electrons precisely in the core of an inertial-fusion target. Phys. Rev. Lett. 89, 125004.CrossRefGoogle ScholarPubMed
Myatt, J., Delettrez, J.A., Maximov, A.V., Meyerhofer, D.D., Shory, R.W., Stoeckl, C. & Storm, M. (2009). Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation. Phys. Rev. E, 79, 066409.Google Scholar
Nagamine, K.. (2001). Review of measurements of fusion neutrons in muon catalyzed d-t. Hyp. Int. 138, 513.CrossRefGoogle Scholar
Pahlavani, M.R. & Motevalli, S.M. (2009). Study of muon catalysed fusion in deuterium-tritium fuel under compressive conditions. Acta Phys. Pol. B 40, 319329.Google Scholar
Rebane, T.K. (2009). Stability of Coulomb systems. Phys. At. Nucl. 72, 5558.Google Scholar
Rosenbluth, M. (1950). High energy elastic scattering of electrons on protons high energy elastic scattering of electrons on protons. Phys. Rev. 79, 615619.CrossRefGoogle Scholar
Shearer, J.W., Garrison, J., Wong, J. & Swain, J.E. (1972). Pair production by relativistic electrons from an intense laser focus. Phys. Rev. A 8, 15821588.Google Scholar
Starikov, K.V. & Deutsch, C. (2005). Stopping of relativistic electrons in a partially degenerate electron fluid. Phys. Rev. E 71, 026407.CrossRefGoogle Scholar
Yabuuchi, T., Das, A., Kumar, G.R., Habaara, H., Kam, P.K., Kodama, R., Mima, K., Norreys, P.A., Sengupta, S. & Tanaka, K.A. (2009). Evidence of anomalous resistivity for hot electron propagation through a dense fustion core in fast ignition experiments. New J. Phys. 11, 09303.Google Scholar