Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 28
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Krämer, J.M. Budde, M. Bødker, F. Irman, A. Jochmann, A. Kristensen, J.P. Lehnert, U. Michel, P. and Schramm, U. 2016. Electron beam final focus system for Thomson scattering at ELBE. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 830, p. 532.


    Petrillo, V. Bacci, A. Curatolo, C. Drebot, I. Giribono, A. Maroli, C. Rossi, A. R. Serafini, L. Tomassini, P. Vaccarezza, C. and Variola, A. 2015. Polarization of x-gamma radiation produced by a Thomson and Compton inverse scattering. Physical Review Special Topics - Accelerators and Beams, Vol. 18, Issue. 11,


    Potylitsyn, A.P. and Kolchuzhkin, A.M. 2015. Spectral characteristics of Compton backscattering sources. Linear and nonlinear modes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 355, p. 246.


    Carlsten, B E Krawczyk, F L Lewellen, J W Marksteiner, Q R Nguyen, D C and Yampolsky, N A 2014. High repetition-rate inverse Compton scattering x-ray source driven by a free-electron laser. Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 47, Issue. 23, p. 234012.


    Ionel, L. and Ursescu, D. 2014. Spatial extension of the electromagnetic field from tightly focused ultra-short laser pulses. Laser and Particle Beams, Vol. 32, Issue. 01, p. 89.


    Kuroda, R. 2014. Comprehensive Biomedical Physics.


    Kuroda, R. Taira, Y. Yasumoto, M. Toyokawa, H. and Yamada, K. 2014. K-edge imaging with quasi-monochromatic LCS X-ray source on the basis of S-band compact electron linac. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 331, p. 257.


    Petrillo, V. Bacci, A. Curatolo, C. Ferrario, M. Gatti, G. Maroli, C. Rau, J. V. Ronsivalle, C. Serafini, L. Vaccarezza, C. and Venturelli, M. 2014. Dual color x rays from Thomson or Compton sources. Physical Review Special Topics - Accelerators and Beams, Vol. 17, Issue. 2,


    Steiniger, Klaus Bussmann, Michael Pausch, Richard Cowan, Tom Irman, Arie Jochmann, Axel Sauerbrey, Roland Schramm, Ulrich and Debus, Alexander 2014. Optical free-electron lasers with Traveling-Wave Thomson-Scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 47, Issue. 23, p. 234011.


    Bessonov, E.G. 2013. Light sources based on relativistic ion beams. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 309, p. 92.


    Jochmann, A. Irman, A. Lehnert, U. Couperus, J.P. Kuntzsch, M. Trotsenko, S. Wagner, A. Debus, A.D. Schlenvoigt, H.-P. Helbig, U. Bock, S. Ledingham, K.W.D. Cowan, T.E. Sauerbrey, R. and Schramm, U. 2013. Operation of a picosecond narrow-bandwidth Laser–Thomson-backscattering X-ray source. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 309, p. 214.


    Ping, Y.L. He, X.T. Zhang, H. Qiao, B. Cai, H.B. and Chen, S.Y. 2013. Gamma-ray source through inverse Compton scattering in a thermal hohlraum. Laser and Particle Beams, Vol. 31, Issue. 04, p. 607.


    Hada, Masaki and Matsuo, Jiro 2012. Ultrafast X-ray sources for time-resolved measurements. X-Ray Spectrometry, Vol. 41, Issue. 4, p. 188.


    Laundy, D. Priebe, G. Jamison, S.P. Graham, D.M. Phillips, P.J. Smith, S.L. Saveliev, Y. Vassilev, S. and Seddon, E.A. 2012. Results from the Daresbury Compton backscattering X-ray source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 689, p. 108.


    Petrillo, V. Bacci, A. Ben Alì Zinati, R. Chaikovska, I. Curatolo, C. Ferrario, M. Maroli, C. Ronsivalle, C. Rossi, A.R. Serafini, L. Tomassini, P. Vaccarezza, C. and Variola, A. 2012. Photon flux and spectrum of Compton sources. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 693, p. 109.


    Zhao, Shihua Lv, Qingzheng Yuan, Suying and Li, Yingjun 2012. Surpassing one x-ray photon per electron in nonlinear Thomson scattering in 180° geometry. Physics of Plasmas, Vol. 19, Issue. 1, p. 013111.


    Kuroda, R. Toyokawa, H. Yasumoto, M. Ikeura-Sekiguchi, H. Koike, M. Yamada, K. Yanagida, T. Nakajyo, T. Sakai, F and Mori, K. 2011. Quasi-monochromatic hard X-ray source via laser Compton scattering and its application. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 637, Issue. 1, p. S183.


    Debus, A. D. Bussmann, M. Siebold, M. Jochmann, A. Schramm, U. Cowan, T. E. and Sauerbrey, R. 2010. Traveling-wave Thomson scattering and optical undulators for high-yield EUV and X-ray sources. Applied Physics B, Vol. 100, Issue. 1, p. 61.


    Krafft, Geoffrey A. and Priebe, Gerd 2010. Compton Sources of Electromagnetic Radiation. Reviews of Accelerator Science and Technology, Vol. 03, Issue. 01, p. 147.


    Luo, W. Xu, W. Pan, Q. Y. Cai, X. Z. Chen, Y. Z. Fan, G. T. Fan, G. W. Li, Y. J. Liu, W. H. Lin, G. Q. Ma, Y. G. Shen, W. Q. Shi, X. C. Xu, B. J. Xu, J. Q. Xu, Y. Zhang, H. O. Yan, Z. Yang, L. F. and Zhao, M. H. 2010. X-ray generation from slanting laser–Compton scattering for future energy-tunable Shanghai Laser Electron Gamma Source. Applied Physics B, Vol. 101, Issue. 4, p. 761.


    ×

Inverse Compton backscattering source driven by the multi-10 TW laser installed at Daresbury

  • G. Priebe (a1), D. Laundy (a1), M.A. Macdonald (a1), G.P. Diakun (a1), S.P. Jamison (a2), L.B. Jones (a1) (a2), D.J. Holder (a1) (a2), S.L. Smith (a1) (a2), P.J. Phillips (a3), B.D. Fell (a1), B. Sheehy (a4), N. Naumova (a5), I.V. Sokolov (a6), S. Ter-Avetisyan (a7), K. Spohr (a8), G.A. Krafft (a9), J.B. Rosenzweig (a10), U. Schramm (a11), F. Grüner (a12), G.J. Hirst (a13), J. Collier (a13), S. Chattopadhyay (a14) and E.A. Seddon (a1)
  • DOI: http://dx.doi.org/10.1017/S0263034608000700
  • Published online: 20 November 2008
Abstract
Abstract

Inverse Compton scattering is a promising method to implement a high brightness, ultra-short, energy tunable X-ray source at accelerator facilities. We have developed an inverse Compton backscattering X-ray source driven by the multi-10 TW laser installed at Daresbury. Hard X-rays, with spectral peaks ranging from 15 to 30 keV, depending on the scattering geometry, will be generated through the interaction of laser pulses with electron bunches delivered by the energy recovery linac machine, initially known as energy recovery linac prototype and subsequently renamed accelerators and lasers in combined experiments. X-ray pulses containing 9 × 107 photons per pulse will be created from head-on collisions, with a pulse duration comparable to the incoming electron bunch length. For transverse collisions 8 × 106 photons per pulse will be generated, where the laser pulse transit time defines the X-ray pulse duration. The peak spectral brightness is predicted to be ~1021 photons/(s mm2 mrad2 0.1% Δλ/λ).

Copyright
Corresponding author
Address correspondence and reprint requests to: G. Priebe, STFC, Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, UK. E-mail: gerd.priebe@stfc.ac.uk
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

G. Arthur , A.G. Materlik , R. Tatchyn & H. Winick (1995). The LCLS: A fourth generation light source using the SLAC linac. Rev. Sci. Instr. 66, 1987.

S. Baker , J.S. Robinson , C.A. Haworth , H. Teng , R.A. Smith , C.C. Chiril , M. Lein , J.W. Tisch & J.P. Marangos (2006). Probing proton dynamics in molecules on an attosecond timescale. Science 312, 4247.

G. Berden , S.P. Jamison , A.M. MacLeod , W.A. Gillespie , B. Redlich & A.F.G. van der Meer (2004). Electro-optic technique with improved time resolution for real-time, nondestructive, single-shot measurements of femtosecond electron bunch profiles. Phys. Rev. Lett. 93, 114802.

M. Borland (2006). Evaluation of the possibility of upgrading the advanced photon source to an energy recovery linac. Nucl. Instr. Meth. A 557, 224229.

T. Brabec , Ch. Spielmann , P.F. Curley & F. Krausz (1992). Kerr lens mode locking. Opt. Lett. 17, 1292.

L.S. Brown & T.W.B. Kibble (1964). Interaction of intense laser beams with electrons. Phys. Rev. 133, A705.

P. Catravas , E. Esarey & W.P. Leemans (2001). Femtosecond Thomson scattering X-ray source based on laser wakefield accelerator for ultrafast X-ray absorption spectroscopy. Meas. Sci. Technol. 12, 1828.

L.M. Chen , M. Kando , M.H. Xu , Y.T. Li , J. Koga , M. Chen , H. Xu , X.H. Yuan , Q.L. Dong , Z.M. Sheng , S.V. Bulanov , Y. Kato , J. Zhang & T. Tajima (2008). Study of X-ray emission: Enhancement via a high-contrast femtosecond laser interacting with a solid foil. Phys. Rev. Lett. 100, 045004.

R. Coisson (1979). Angular-spectral distribution and polarization of synchrotron radiation from a “short” magnet. Phys. Rev. A 20, 524.

A.H. Compton (1923). A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 21, 207 & 483.

E.J. Divall & I.N. Ross (2004). High dynamic range contrast measurements by use of an optical parametric amplifier correlator. Opt. Lett. 29, 2273.

T. Guo , C. Spielmann , B.C. Walker & C.P.J. Barty (2001). Generation of hard X-rays by ultrafast terawatt lasers. Rev. Sci. Instrum. 72, 41.

N. Hafz , H.J. Lee , G.H. Kim , H. Suk & J. Lee (2003). Femtosecond X-ray generation via the Thomson scattering of a terawatt laser from electron bunches produced from the LWFA utilizing a plasma density transition. IEEE Trans. Plasma Sci. 31, 1388.

F.V. Hartemann , H.A. Baldis , A.K. Kerman , A. Le Foll , N.C. Luhmann & B. Rupp (2001). Three-dimensional theory of emittance in Compton scattering and X-ray protein crystallography. Phys. Rev. E 64, 016501.

S.P. Jamison , A.M. MacLeod , G. Berden , D.A. Jaroszynski & W.A. Gillespie (2006). Temporally resolved electro-optic effect. Opt. Lett. 31, 1753.

S.P. Jamison , J. Shen , A.M. MacLeod , W.A. Gillespie & D.A. Jaroszynski (2003). High-temporal-resolution, single-shot characterization of terahertz pulses. Opt. Lett. 28, 1710.

K.A. Janulewicz , A. Lucianetti , G. Priebe & P.V. Nickles (2004 a). Review of state-of-the-art and output characteristics of table-top soft X-ray lasers. X-ray Spec. 33, 262266.

K.A. Janulewicz , G. Priebe , J. Tümmler & P.V. Nickles (2004 b). Single-pulse low-energy-driven transient inversion X-ray lasers. IEEE J. Quant. Electr. 10, 13681372.

K.A. Janulewicz , J. Tummler , G. Priebe & P.V. Nickles (2005). Plasmakinetics perspective of a collisional Ni-like X-ray laser pumped by a single profilled laser pulse. Phys. Rev. A 72, 043825.

F. Khattak , E.G. Saiz , T. Dzelzainis , D. Riley & Z. Zhai (2007). Scale-length optimizing of short pulse Cu K-alpha laser plasma sources. Appl. Phys. Lett. 90, 081502.

K.J. Kim (1989). Physics of particle accelerators. AIP Conf. Proc. 184, 565.

K.J. Kim , S. Chattopadhyay & C.V. Shank (1994). Generation of femtosecond X-rays by 90 degrees Thomson scattering. Nucl. Instr. Meth. A 341, 351.

O. Klein & Y. Nishina (1929). Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac (About the scattering of radiation by free electrons after the new relativistic quantum dynamics of Dirac). Zeit. f. Phys. 52, 853.

G.A. Krafft (2004). Spectral distributions of Thomson-scattered photons from high-intensity pulsed lasers. Phys. Rev. Lett. 92, 204802.

G.A. Krafft , A. Doyuran & J.B. Rosenzweig (2005). Pulsed-laser nonlinear Thomson scattering for general scattering geometries. Phys. Rev. E 72, 056502.

G.N. Kulipanov , A.N. Skrinsky & N.A. Vinokurov (1998). Synchrotron light sources and recent developments of accelerator technology. J. Sync. Radiat. 5, 176.

L.D. Landau & E.M. Lifshitz (1975). Classical Theory of Fields. Butterworth-Heinemann. Oxford: Oxford University Press.

W.P. Leemans , R.W. Schoenlein , P. Volfbeyn , A.H. Chin , T.E. Glover , P. Balling , M. Zolotorev , K.-J. Kim , S. Chattopadhyay & C.V. Shank (1997). Interaction of relativistic electrons with ultrashort laser pulses: generation of femtosecond X-rays and microprobing of electron beams. IEEE J. Quan. Electron. 33, 19251934.

W.P. Leemans , P. Volfbeyn , M. Zolotorev , K.J. Kim , S. Chattopadhyay , R. Schoenlein , P. Balling , C.V. Shank , A. Chin & E. Glover (1996). Laser-based sub-picosecond electron bunch characterization using 90 degrees Thomson scattering. Phys. Rev. Lett. 77, 4182.

H. Legall , H. Stiel , V. Arkadiev & A.A. Bjeoumikhov (2006). High spectral resolution X-ray optics with highly oriented pyrolytic graphite. Opt. Express 14, 10.

A. Lucianetti , K.A. Janulewicz , R. Kroemer , G. Priebe , J. Tummler , W. Sandner , P.V. Nickles & V.I. Redkorechev (2004). Transverse spatial coherence of a transient nickellike silver soft-X-ray laser pumped by a single picosecond laser pulse. Opt. Lett. 29 (8), 881883.

M.M. Notley , R.L. Weber , B. Fell , J. Jeffries , R.R. Freeman , A.J. Mackinnon , R. Dickson , D. Hey , F. Khattak , E.G. Saiz & G. Gregori (2006). Development of time resolved X-ray spectroscopy in high intensity laser-plasma interactions. Rev. Sci. Instr. 77, 10F322.

K.Ta. Phuoc , A. Rousse , M. Pittman , J.P. Rousseau , V. Malka , S. Fritzler , D. Umstadter & D. Hulin (2003). X-Ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma. Phys. Rev. Lett. 91, 195001.

M.W. Poole , S.L. Bennett , M.A. Bowler , N. Bliss , D.M. Dykes , R.C. Farrow , C. Gerth , D.J. Holder , M.A. MacDonald , B. Muratori , H.L. Owen , F.M. Quinn , E.A. Seddon , S.L. Smith , V.P. Suller , B.J. McNeil , I.N. Ross & N.R. Thompson (2003). 4GLS: A new type of fourth generation light source facility. Proc. of the 2003 Particle Accelerator Conference, pp. 189191. Piscataway, NJ: IEEE.

G. Priebe , V.I. Redkorechev , K.A. Janulewicz & P.V. Nickles (2006). Pulse shape measurement by a non-collinear third-order correlation technique. Opt. Commun. 259, 848.

S.K. Ride , E. Esarey & M. Baine (1995). Thomson scattering of intense lasers from electron beams at arbitrary interaction angles. Phys. Rev. E 52, 5425.

D. Riley , J.J. Angulo-Gareta , F.Y. Khattak , M.J. Lamb , P.S. Foster , E.J. Divall , C.J. Hooker , A.J. Langley , R.J. Clarke & D. Neely (2005). Kα yields from Ti foils irradiated with ultrashort laser pulses. Phys. Rev. E 71, 016406.

M.C. Ross , R. Alley , D. Arnett , E. Bong , W. Colocho , J. Frisch , S. Hortonsmith , W. Inman , K. Jobe , T. Kotseroglou , D. McCormick , J. Nelson , M. Scheeff & S. Wagner (1997). A laser-based beam profile monitor for the SLC/SLD interaction region. AIP Conf. Proc. 390, 281289.

Y.I. Salamin & F.H.M. Faisal (1996). Harmonic generation by superintense light scattering from relativistic electrons. Phys. Rev. A 54, 4383.

G. Sansone , E. Benedetti , F. Calegari , C. Vozzi , L. Avaldi , R. Flammini , L. Poletto , P. Villoresi , C. Altucci , R. Velotta , S. Stagira , S. De Silvestri & M. Nisoli (2006). Isolated single-cycle attosecond pulses. Science 314, 443.

E.S. Sarachik & G.T. Schappert (1970). Classical theory of the scattering of intense laser radiation by free electrons. Phys. Rev. D 1, 2738.

R.W. Schoenlein , S. Chattopadhyay , H.H.W. Chong , T.E. Glover , P.A. Heimann , C.V. Shank , A.A. Zholents & M.S. Zolotorev (2000 a). Generation of femtosecond pulses of synchrotron radiation. Science 2237.

R.W. Schoenlein , S. Chattopadhyay , H.H.W. Chong , T.E. Glover , P.A. Heimann , W.P. Leemans , C.V. Shank , A. Zholents & M. Zolotorev (2000 b). Generation of femtosecond X-ray pulses via laser-electron beam interaction. Appl. Phys. B 71, 110.

R.W. Schoenlein , W.P. Leemans , A.H. Chin , P. Volfbeyn , T.E. Glover , P. Balling , M. Zolotorev , K.J. Kim , S. Chattopadhyay & C.V. Shank (1996). Femtosecond X-ray pulses at 0.4 Å generated by 90° Thomson scattering: A tool for probing the structural dynamics of materials. Science 274, 236.

R.F. Service (2002). Battle to become the next generation X-ray source. Science 298, 1356.

W. Siders , A. Cavalleri , K. Sokolowski-Tinten , CS. Tóth , T. Guo , M. Kammler , K.R. Wilson , D. von der Linde & C.P.J. Barty (1999). Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286, 1340.

S.L. Smith , B.D. Muratori , H.L. Owen , G.H. Hoffstaetter , V.N. Litvinenko , I. Ben-Zvi , M. Bai , J. Beebe-Wang , M. Blaskiewicz , R. Calaga , W. Fischer , X.Y. Chang , D. Kayran , J. Kewisch , W.W. MacKay , C. Montag , B. Parker , V. Ptitsyn , T. Roser , A. Ruggiero , T. Satogata , B. Surrow , S. Tepikian , D. Trbojevic , V. Yakimenko , S.Y. Zhang & P. Piot (2005). Optics designs of ongoing ERL projects. Nucl. Instr. Meth. A 557, 145164.

K. Sokolowski-Tinten & D. von der Linde (2004). Ultrafast phase transitions and lattice dynamics probed using laser-produced X-ray pulses J. Phys. Condens. Matter 16, R1517R1536.

D.E. Spence , P.N. Kean & W. Sibbett (1991). 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16, 42.

A. Stingl , M. Lenzner , Ch. Spielmann , F. Krausz & R. Szipocs (1995). Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser. Opt. Lett. 20, 602.

D. Strickland & G. Mourou (1985). Compression of amplified chirped optical pulses. Opt. Com. 56, 219.

S.K. Sundaram & E. Mazur (2002). Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mat. 1, 217224.

P. Tannebaum & T. Shintake (1999). Measurement of small electron-beam spots. Ann. Rev. Nucl. Part. Sci. 49, 125162.

M. Tigner (1965). A possible apparatus for electron clashing experiments. Nuovo Cimento 37, 12281231.

I.V. Tomov , D.A. Oulianov , P. Chen & P.M. Rentzepis (1999). Ultrafast time-resolved transient structures of solids and liquids studied by means of X-ray diffraction and EXAFS. J. Phys. Chem. B. 103, 7081.

J. Tümmler , K.A. Janulewicz , G. Priebe & P.V. Nickles (2005). 10-Hz grazing-incidence pumped Ni-like Mo X-ray laser. Phys. Rev. E 72, 037401.

D. Umstadter (2003). Relativistic laser plasma interactions. J. Phys. D: Appl. Phys. 36, R151.

D. von der Linde (2003). A picosecond view of melting. Science 302, 1345.

J. Wark (1999). X-ray diffraction: Table-top picosecond sources. Nature 398, 284285.

J.D. Watson & F.H.C. Crick (1953). Implications of the structure of deoxyribonucleic acid. Nature 171, 964967.

J. Yang , M. Washio , A. Endo & T. Hori (1999). Evaluation of fs X-rays produced by Thomson scattering under linear and nonlinear interactions between a low-emittance electron beam and an intense polarized laser light. Nucl. Instr. Meth. Phys. Res. A 428, 556.

N. Zhavoronkov , Y. Gritsai , M. Bargheer , M. Woerner & T. Elsaesser (2005). Generation of ultrashort Kα radiation from quasipoint interaction area of femtosecond pulses with thin foils. Appl. Phys. Lett. 86, 244107.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: