Skip to main content
×
Home

Inverse Compton backscattering source driven by the multi-10 TW laser installed at Daresbury

  • G. Priebe (a1), D. Laundy (a1), M.A. Macdonald (a1), G.P. Diakun (a1), S.P. Jamison (a2), L.B. Jones (a1) (a2), D.J. Holder (a1) (a2), S.L. Smith (a1) (a2), P.J. Phillips (a3), B.D. Fell (a1), B. Sheehy (a4), N. Naumova (a5), I.V. Sokolov (a6), S. Ter-Avetisyan (a7), K. Spohr (a8), G.A. Krafft (a9), J.B. Rosenzweig (a10), U. Schramm (a11), F. Grüner (a12), G.J. Hirst (a13), J. Collier (a13), S. Chattopadhyay (a14) and E.A. Seddon (a1)...
Abstract
Abstract

Inverse Compton scattering is a promising method to implement a high brightness, ultra-short, energy tunable X-ray source at accelerator facilities. We have developed an inverse Compton backscattering X-ray source driven by the multi-10 TW laser installed at Daresbury. Hard X-rays, with spectral peaks ranging from 15 to 30 keV, depending on the scattering geometry, will be generated through the interaction of laser pulses with electron bunches delivered by the energy recovery linac machine, initially known as energy recovery linac prototype and subsequently renamed accelerators and lasers in combined experiments. X-ray pulses containing 9 × 107 photons per pulse will be created from head-on collisions, with a pulse duration comparable to the incoming electron bunch length. For transverse collisions 8 × 106 photons per pulse will be generated, where the laser pulse transit time defines the X-ray pulse duration. The peak spectral brightness is predicted to be ~1021 photons/(s mm2 mrad2 0.1% Δλ/λ).

Copyright
Corresponding author
Address correspondence and reprint requests to: G. Priebe, STFC, Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, UK. E-mail: gerd.priebe@stfc.ac.uk
References
Hide All
Abdallah J., Batani D., Desai T., Lucchini G., Faenov A., Pikuz T., Magunov A. & Narayanan V. (2007). High resolution X-ray emission spectra from picosecond laser irradiated Ge targets. Laser Part. Beams 25, 245252.
Alferov D.F., Bashmakov Yu. & Bessonov E.G. (1974). Undulator radiation. Sov. Phys. Tech. Phys. 18, 1337.
Arthur G., Materlik A.G., Tatchyn R. & Winick H. (1995). The LCLS: A fourth generation light source using the SLAC linac. Rev. Sci. Instr. 66, 1987.
Baeva T., Gordienko S. & Pukhov A. (2007). Relativistic plasma control for single attosecond pulse generation: Theory, simulations, and structure of the pulse. Laser Part. Beams 25, 339346.
Baker S., Robinson J.S., Haworth C.A., Teng H., Smith R.A., Chiril C.C., Lein M., Tisch J.W. & Marangos J.P. (2006). Probing proton dynamics in molecules on an attosecond timescale. Science 312, 4247.
Bazerov I., Belomestnykh S., Bilderback D., Finkelstein K., Fontes E., Gray S., Gruner S.M., Krafft G.A., Merminga H., Helmke R., Rogers J., Sinclair C., Talman R. & Tigner M. (2001). Study for a proposed phase I energy recovery linac (ERL) synchrotron light source. CHESS Technical Memo 01-003, JLAB-ACT-01-04. Ithica: Cornell University.
Berden G., Jamison S.P., MacLeod A.M., Gillespie W.A., Redlich B. & van der Meer A.F.G. (2004). Electro-optic technique with improved time resolution for real-time, nondestructive, single-shot measurements of femtosecond electron bunch profiles. Phys. Rev. Lett. 93, 114802.
Borland M. (2006). Evaluation of the possibility of upgrading the advanced photon source to an energy recovery linac. Nucl. Instr. Meth. A 557, 224229.
Brabec T., Spielmann Ch., Curley P.F. & Krausz F. (1992). Kerr lens mode locking. Opt. Lett. 17, 1292.
Brown L.S. & Kibble T.W.B. (1964). Interaction of intense laser beams with electrons. Phys. Rev. 133, A705.
Catravas P., Esarey E. & Leemans W.P. (2001). Femtosecond Thomson scattering X-ray source based on laser wakefield accelerator for ultrafast X-ray absorption spectroscopy. Meas. Sci. Technol. 12, 1828.
Chen L.M., Kando M., Xu M.H., Li Y.T., Koga J., Chen M., Xu H., Yuan X.H., Dong Q.L., Sheng Z.M., Bulanov S.V., Kato Y., Zhang J. & Tajima T. (2008). Study of X-ray emission: Enhancement via a high-contrast femtosecond laser interacting with a solid foil. Phys. Rev. Lett. 100, 045004.
Chouffani K., Harmon F., Wells D., Jones J. & Lancaster G. (2006). Laser-Compton scattering as a tool for electron beam diagnostics. Laser Part. Beams 24, 411.
Coisson R. (1979). Angular-spectral distribution and polarization of synchrotron radiation from a “short” magnet. Phys. Rev. A 20, 524.
Compton A.H. (1923). A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 21, 207 & 483.
Divall E.J. & Ross I.N. (2004). High dynamic range contrast measurements by use of an optical parametric amplifier correlator. Opt. Lett. 29, 2273.
Giulietti D., Galimberti M., Giulietti A., Gizzi L.A., Labate L. & Tomassini P. (2005). The laser-matter interaction meets the high energy physics: Laser-plasma accelerators and bright gamma X-ray sources. Laser Part. Beams 23, 309.
Gruner S.M. & Tigner M. (2001). Study for a proposed phase I energy recovery linac (ERL) synchrotron light source. CHESS Technical Memo 01-003, JLAB-ACT-01-04. Ithica: Cornell University.
Guo T., Spielmann C., Walker B.C. & Barty C.P.J. (2001). Generation of hard X-rays by ultrafast terawatt lasers. Rev. Sci. Instrum. 72, 41.
Hafz N., Lee H.J., Kim G.H., Suk H. & Lee J. (2003). Femtosecond X-ray generation via the Thomson scattering of a terawatt laser from electron bunches produced from the LWFA utilizing a plasma density transition. IEEE Trans. Plasma Sci. 31, 1388.
Hartemann F.V., Baldis H.A., Kerman A.K., Le Foll A., Luhmann N.C. & Rupp B. (2001). Three-dimensional theory of emittance in Compton scattering and X-ray protein crystallography. Phys. Rev. E 64, 016501.
Hartemann F.V., Brown W.J., Gibson D.J., Anderson S.G., Tremaine A.M., Springer P.T., Wootton A.J., Hartouni E.P. & Barty C.P.J. (2005). High-energy scaling of Compton scattering light sources. Phys. Rev. Spec. Top. 8, 100702.
Hartemann F.V., Tremaine A.M., Anderson S.G., Barty C.P.J., Betts S.M., Booth R., Brown W.J., Crane J.K., Cross R.R., Gibson D.J., Fittinghoff D.N., Kuba J., Le Sage G.P., Slaughter D.R., Wootton A.J., Hartouni E.P., Springer P.T., Rosenzweig J.B. & Kerman A.K. (2004). Characterization of a bright tunable ultrafast Compton scattering X-ray source. Laser Part. Beams 22, 221244.
Helliwell J.R. & Rentzepis P.M. (1997). Time-resolved diffraction. In Time-Resolved X-ray and Electron Diffraction. Oxford: Oxford University Press.
Jamison S.P., MacLeod A.M., Berden G., Jaroszynski D.A. & Gillespie W.A. (2006). Temporally resolved electro-optic effect. Opt. Lett. 31, 1753.
Jamison S.P., Shen J., MacLeod A.M., Gillespie W.A. & Jaroszynski D.A. (2003). High-temporal-resolution, single-shot characterization of terahertz pulses. Opt. Lett. 28, 1710.
Janulewicz K.A., Lucianetti A., Priebe G. & Nickles P.V. (2004 a). Review of state-of-the-art and output characteristics of table-top soft X-ray lasers. X-ray Spec. 33, 262266.
Janulewicz K.A., Priebe G., Tümmler J. & Nickles P.V. (2004 b). Single-pulse low-energy-driven transient inversion X-ray lasers. IEEE J. Quant. Electr. 10, 13681372.
Janulewicz K.A., Tummler J., Priebe G. & Nickles P.V. (2005). Plasmakinetics perspective of a collisional Ni-like X-ray laser pumped by a single profilled laser pulse. Phys. Rev. A 72, 043825.
Khattak F., Saiz E.G., Dzelzainis T., Riley D. & Zhai Z. (2007). Scale-length optimizing of short pulse Cu K-alpha laser plasma sources. Appl. Phys. Lett. 90, 081502.
Kim K.J. (1989). Physics of particle accelerators. AIP Conf. Proc. 184, 565.
Kim K.J., Chattopadhyay S. & Shank C.V. (1994). Generation of femtosecond X-rays by 90 degrees Thomson scattering. Nucl. Instr. Meth. A 341, 351.
Klein O. & Nishina Y. (1929). Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac (About the scattering of radiation by free electrons after the new relativistic quantum dynamics of Dirac). Zeit. f. Phys. 52, 853.
Krafft G.A. (2004). Spectral distributions of Thomson-scattered photons from high-intensity pulsed lasers. Phys. Rev. Lett. 92, 204802.
Krafft G.A., Doyuran A. & Rosenzweig J.B. (2005). Pulsed-laser nonlinear Thomson scattering for general scattering geometries. Phys. Rev. E 72, 056502.
Kulipanov G.N., Skrinsky A.N. & Vinokurov N.A. (1998). Synchrotron light sources and recent developments of accelerator technology. J. Sync. Radiat. 5, 176.
Landau L.D. & Lifshitz E.M. (1975). Classical Theory of Fields. Butterworth-Heinemann. Oxford: Oxford University Press.
Leemans W., Chattopadhyay S., Esarey E., Zholents A., Zolotorev M., Chin A., Schoenlein R. & Shank C. (2000). Femtosecond X-ray generation through relativistic electron beam-laser interaction. Phys. Astrophys. 1, 279296.
Leemans W.P., Schoenlein R.W., Volfbeyn P., Chin A.H., Glover T.E., Balling P., Zolotorev M., Kim K.-J., Chattopadhyay S. & Shank C.V. (1997). Interaction of relativistic electrons with ultrashort laser pulses: generation of femtosecond X-rays and microprobing of electron beams. IEEE J. Quan. Electron. 33, 19251934.
Leemans W.P., Volfbeyn P., Zolotorev M., Kim K.J., Chattopadhyay S., Schoenlein R., Balling P., Shank C.V., Chin A. & Glover E. (1996). Laser-based sub-picosecond electron bunch characterization using 90 degrees Thomson scattering. Phys. Rev. Lett. 77, 4182.
Legall H., Stiel H., Arkadiev V. & Bjeoumikhov A.A. (2006). High spectral resolution X-ray optics with highly oriented pyrolytic graphite. Opt. Express 14, 10.
Li Y., Huang Z., Borland M.D. & Milton S. (2002). Small-angle Thomson scattering of ultrafast laser pulses for bright, sub-100-fs X-ray radiation. Phys. Rev. 5, 044701.
Lucianetti A., Janulewicz K.A., Kroemer R., Priebe G., Tummler J., Sandner W., Nickles P.V. & Redkorechev V.I. (2004). Transverse spatial coherence of a transient nickellike silver soft-X-ray laser pumped by a single picosecond laser pulse. Opt. Lett. 29 (8), 881883.
Mangles S.P.D., Walton B.R., Najmudin Z., Dangor A.E., Krushelnick K., Malka V., Manclossi M., Lopes N., Carias C., Mendes G. & Dorchies F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.
Materlik A.G., Tatchyn R. & Winick H. (1995). The LCLS: A fourth generation light source using the SLAC linac. Rev. Sci. Instr. 66, 1987.
Neil G.R., Behre C., Benson S.V., Bevins M., Biallas G., Boyce J., Coleman J., Dillon-Townes L.A., Douglas D., Dylla H.F., Evans R., Grippo A., Gruber D., Gubeli J., Hardy D., Hernandez-Garcia C., Jordan K., Kelley M.J., Merminga L., Mammosser J., Moore W., Nishimori N., Pozdeyev E., Preble J., Rimmer R., Shinn M., Siggins T., Tennant C., Walker R., Williams G.P. & Zhang S. (2005). The JLab High Power ERL Light Source, The 32nd Advanced ICFA Beam Dynamics Workshop on Energy Recovering Linacs. Newport News, VA: Jefferson Lab.
Notley M.M., Weber R.L., Fell B., Jeffries J., Freeman R.R., Mackinnon A.J., Dickson R., Hey D., Khattak F., Saiz E.G. & Gregori G. (2006). Development of time resolved X-ray spectroscopy in high intensity laser-plasma interactions. Rev. Sci. Instr. 77, 10F322.
Ozaki T., Kieffer J.C., Toth R., Fourmaux S. & Bandulet H. (2006). Experimental prospects at the Canadian advanced laser light source facility. Laser Part. Beams 24, 101–6.
Phuoc K.Ta., Rousse A., Pittman M., Rousseau J.P., Malka V., Fritzler S., Umstadter D. & Hulin D. (2003). X-Ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma. Phys. Rev. Lett. 91, 195001.
Pogorelski I.V., Ben-Zvi I., Hirose T., Kashiwagi S., Yakimenko V., Kusche K., Siddons P., Skaritka J., Kumita T., Tsunemi A., Omori T., Urakawa J., Washio M., Yokoya K., Okugi T., Liu Y., He P. & Cline D. (2000). Demonstration of 8 × 1018 photons/second peaked at 1.8 Å in a relativistic Thomson scattering experiment. Phys. Rev. 3, 090702.
Poole M.W., Bennett S.L., Bowler M.A., Bliss N., Dykes D.M., Farrow R.C., Gerth C., Holder D.J., MacDonald M.A., Muratori B., Owen H.L., Quinn F.M., Seddon E.A., Smith S.L., Suller V.P., McNeil B.J., Ross I.N. & Thompson N.R. (2003). 4GLS: A new type of fourth generation light source facility. Proc. of the 2003 Particle Accelerator Conference, pp. 189191. Piscataway, NJ: IEEE.
Priebe G., Redkorechev V.I., Janulewicz K.A. & Nickles P.V. (2006). Pulse shape measurement by a non-collinear third-order correlation technique. Opt. Commun. 259, 848.
Ride S.K., Esarey E. & Baine M. (1995). Thomson scattering of intense lasers from electron beams at arbitrary interaction angles. Phys. Rev. E 52, 5425.
Riley D., Angulo-Gareta J.J., Khattak F.Y., Lamb M.J., Foster P.S., Divall E.J., Hooker C.J., Langley A.J., Clarke R.J. & Neely D. (2005). Kα yields from Ti foils irradiated with ultrashort laser pulses. Phys. Rev. E 71, 016406.
Ross M.C., Alley R., Arnett D., Bong E., Colocho W., Frisch J., Hortonsmith S., Inman W., Jobe K., Kotseroglou T., McCormick D., Nelson J., Scheeff M. & Wagner S. (1997). A laser-based beam profile monitor for the SLC/SLD interaction region. AIP Conf. Proc. 390, 281289.
Salamin Y.I. & Faisal F.H.M. (1996). Harmonic generation by superintense light scattering from relativistic electrons. Phys. Rev. A 54, 4383.
Sansone G., Benedetti E., Calegari F., Vozzi C., Avaldi L., Flammini R., Poletto L., Villoresi P., Altucci C., Velotta R., Stagira S., De Silvestri S. & Nisoli M. (2006). Isolated single-cycle attosecond pulses. Science 314, 443.
Sarachik E.S. & Schappert G.T. (1970). Classical theory of the scattering of intense laser radiation by free electrons. Phys. Rev. D 1, 2738.
Schoenlein R.W., Chattopadhyay S., Chong H.H.W., Glover T.E., Heimann P.A., Shank C.V., Zholents A.A. & Zolotorev M.S. (2000 a). Generation of femtosecond pulses of synchrotron radiation. Science 2237.
Schoenlein R.W., Chattopadhyay S., Chong H.H.W., Glover T.E., Heimann P.A., Leemans W.P., Shank C.V., Zholents A. & Zolotorev M. (2000 b). Generation of femtosecond X-ray pulses via laser-electron beam interaction. Appl. Phys. B 71, 110.
Schoenlein R.W., Leemans W.P., Chin A.H., Volfbeyn P., Glover T.E., Balling P., Zolotorev M., Kim K.J., Chattopadhyay S. & Shank C.V. (1996). Femtosecond X-ray pulses at 0.4 Å generated by 90° Thomson scattering: A tool for probing the structural dynamics of materials. Science 274, 236.
Service R.F. (2002). Battle to become the next generation X-ray source. Science 298, 1356.
Siders W., Cavalleri A., Sokolowski-Tinten K., Tóth CS., Guo T., Kammler M., Wilson K.R., von der Linde D. & Barty C.P.J. (1999). Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286, 1340.
Smith S.L., Muratori B.D., Owen H.L., Hoffstaetter G.H., Litvinenko V.N., Ben-Zvi I., Bai M., Beebe-Wang J., Blaskiewicz M., Calaga R., Fischer W., Chang X.Y., Kayran D., Kewisch J., MacKay W.W., Montag C., Parker B., Ptitsyn V., Roser T., Ruggiero A., Satogata T., Surrow B., Tepikian S., Trbojevic D., Yakimenko V., Zhang S.Y. & Piot P. (2005). Optics designs of ongoing ERL projects. Nucl. Instr. Meth. A 557, 145164.
Smith S.L., Bliss N., Goulden A.R., Holder D.J., McIntosh P.A. & Priebe G. (2007). The status of the Daresbury energy recovery linac prototype. IEEE Part. Acc. Conf. 1–11, 33053307.
Sokolowski-Tinten K. & von der Linde D. (2004). Ultrafast phase transitions and lattice dynamics probed using laser-produced X-ray pulses J. Phys. Condens. Matter 16, R1517R1536.
Spence D.E., Kean P.N. & Sibbett W. (1991). 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16, 42.
Stingl A., Lenzner M., Spielmann Ch., Krausz F. & Szipocs R. (1995). Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser. Opt. Lett. 20, 602.
Strickland D. & Mourou G. (1985). Compression of amplified chirped optical pulses. Opt. Com. 56, 219.
Sundaram S.K. & Mazur E. (2002). Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mat. 1, 217224.
Suwada T., Iida N., Funakoshi Y., Kawamoto T. & Kikuchi M. (1997). First beam test result of a prototype wire scanner for the KEKB injector linac and BT lines. Proc. of 11th Symp. Acc. Tech. Sc., Ako, Hyogo, Japan, 97184.
Tannebaum P. & Shintake T. (1999). Measurement of small electron-beam spots. Ann. Rev. Nucl. Part. Sci. 49, 125162.
Tigner M. (1965). A possible apparatus for electron clashing experiments. Nuovo Cimento 37, 12281231.
Tomov I.V., Oulianov D.A., Chen P. & Rentzepis P.M. (1999). Ultrafast time-resolved transient structures of solids and liquids studied by means of X-ray diffraction and EXAFS. J. Phys. Chem. B. 103, 7081.
Tümmler J., Janulewicz K.A., Priebe G. & Nickles P.V. (2005). 10-Hz grazing-incidence pumped Ni-like Mo X-ray laser. Phys. Rev. E 72, 037401.
Umstadter D. (2003). Relativistic laser plasma interactions. J. Phys. D: Appl. Phys. 36, R151.
von der Linde D. (2003). A picosecond view of melting. Science 302, 1345.
von Laue M. (1936). Die äußere form der kristalle in ihrem einfluß auf die interferenzerscheinungen an raumgittern. Annalen der Physik 26, 55.
Wark J. (1999). X-ray diffraction: Table-top picosecond sources. Nature 398, 284285.
Watson J.D. & Crick F.H.C. (1953). Implications of the structure of deoxyribonucleic acid. Nature 171, 964967.
Xia B., Li Z., Kang K., Huang W., Huang G., He X., Du Y. & Tang C. (2004). Evaluation and simulations of a Thomson scattering X-ray source based on ray tracing methods. Laser Part. Beams 22, 355.
Yang J., Washio M., Endo A. & Hori T. (1999). Evaluation of fs X-rays produced by Thomson scattering under linear and nonlinear interactions between a low-emittance electron beam and an intense polarized laser light. Nucl. Instr. Meth. Phys. Res. A 428, 556.
Zhavoronkov N., Gritsai Y., Bargheer M., Woerner M. & Elsaesser T. (2005). Generation of ultrashort Kα radiation from quasipoint interaction area of femtosecond pulses with thin foils. Appl. Phys. Lett. 86, 244107.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 202 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.