Skip to main content Accessibility help
×
Home

Investigation of optical limiting based on the combination of stimulated Brillouin scattering and carbon nanotube/HT-270 suspension

  • W.L.J. Hasi (a1), Z.W. Lu (a1), M.L. Fu (a1), H.H. Lu (a1), S. Gong (a1), D.Y. Lin (a1) and W.M. He (a1)...

Abstract

In order to improve the optical limiting performance based on stimulated Brillouin scattering (SBS), a combination of SBS and carbon nanotube/HT-270 suspension for optical limiting is proposed in this paper. The dependence of output energy of optical limiting based on this hybrid approach on the pump energy is numerically simulated, and validated in Continuum's Nd: YAG seed-injected laser. The results indicate that the output energy based on this hybrid approach shows much better performance compared with that based on single SBS. In this approach, the SBS threshold can be controlled by adjusting the gain coefficient of medium and focal length of the lens, and the threshold of suspension can be controlled by altering the concentration and focal length of the lens, therefore, this hybrid approach to realize optical limiting has great potential in practical application.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Investigation of optical limiting based on the combination of stimulated Brillouin scattering and carbon nanotube/HT-270 suspension
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Investigation of optical limiting based on the combination of stimulated Brillouin scattering and carbon nanotube/HT-270 suspension
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Investigation of optical limiting based on the combination of stimulated Brillouin scattering and carbon nanotube/HT-270 suspension
      Available formats
      ×

Copyright

Corresponding author

Address correspondence and reprint requests to: Zhiwei Lu, Institute of Opto-electronics, Harbin Institute of Technology, P.O. 3031, Harbin, 150080, China. E-mail: zw_lu@sohu.com

References

Hide All
Boyd, R.W. & Rzazewski, K. (1990). Noise initiation of stimulated Brillouin scattering. Phys. Rev. A 42, 55145521.
Chen, P., Wu, X., Sun, X., Lin, J., Ji, W. & Tan, K.L. (1999). Electronic structure and optical limiting behavior of carbon nanotubes. Phys. Rev. Lett. 82, 25482551.
Dovgalenko, G.E., Klotz, M. & Salamo, G.J. (1996). Optically induced birefringence in bacteriorhodopsin as an optical limiter. Appl. Phys. Lett. 68, 287289.
Durand, O. & Grolier-Mazza, V. (1998). Picosecond-resolution study of nonlinear scattering in carbon black suspensions in water and ethanol. Opt. Lett. 23, 14711473.
Hasi, W.L.J., Lu, Z.W., Li, Q. & He, W.M. (2007). Research on the enhancement of power-load of two-cell SBS system by choosing different media or mixture medium. Laser Part. Beams 25, 207210.
Hasi, W.L.J., Lu, Z.W., Liu, S.J., Li, Q., Yin, G.H. & He, W.M. (2008 a). Generation of flat-top waveform in the time domain based on stimulated Brillouin scattering. Appl. Phys. B 90, 503506.
Hasi, W.L.J., Gong, S., Lu, Z.W., Lin, D.Y., HE, W.M. & Fan, R.Q. (2008 b). Generation of flat-top waveform in the time domain based on stimulated Brillouin scattering using medium with short phonon lifetime. Laser Part. Beams 26, 511516.
Hasi, W.L.J., Lu, Z.W.Gong, S., Li, Q., Lin, D.Y. & He, W.M. (2008 c). Investigation on output energy characteristic of optical limiting based on the stimulated Brillouin scattering. Appl. Phys. B 92, 599602.
Hasi, W.L.J., Lu, Z.W., Gong, S., Liu, S.J., Li, Q. & He, W.M. (2008 d). Investigation on new SBS media of perfluoro-compound and perfluoropolyether with low absorption coefficient and high power-load ability. Appl. Opt. 47, 10101014.
Hasi, W.L.J., Lu, Z.W., He, W.M., Wang, S.Y. & Liu, S.N. (2004). Experimental investigation on the improvement of SBS characteristics by purifying the mediums. Chin. Opt. Lett. 2, 718721.
Kamanina, N.V. (1999). Reverse saturable absorption in fullerene-containing polyimides: applicability of the forster model. Opt. Commun. 162, 228232.
Kong, H.J., Yoon, J.W., Beak, D., Shin, J.S., Lee, S.K. & Lee, D.W. (2007). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25, 225238.
Lin, H.B., Tonucci, R.J. & Campillo, A.J. (1998). Two-dimensional photonic bandgap optical limiter in the visible. Opt. Lett. 23, 9496.
Lu, Z.W., Hasi, W.L.J., Gong, H.P., Li, Q. & He, W.M. (2006) Generation of flat-topped waveform by the optical limiting based on stimulated Brillouin scattering. Opt. Express 14, 54975501.
Lu, Y.L., Lu, Z.W. & Dong, Y.K. (2007). Controlling the optical limiting shape in stimulated Brillouin scattering by dye absorption. Acta Phys. Sin. 56, 58495854(in Chinese).
Lu, Z.W., Lu, Y.L. & Yang, J. (2003). Optical limiting effect based on stimulated Brillouin scattering in CCl4. Chin. Phys. 12, 507513.
Luo, Y.Q., Wang, W.P., Zhang, D.Y., Luo, F. & Liu, H.T. (2006). Experiment on optical limiting behavior of carbon nanotube. Hi Energy Dens. Phys. 4, 145148(in Chinese).
Mansour, K., Soileau, M.J. & Stryland, E.W.V. (1992). Nonlinear optical properties of carbon-black suspensions (ink). J. Opt. Soc. Am. B 9, 11001109.
Ostermeyer, M., Kong, H.J., Kovalev, V.I., Harrison, R.G. & Fotiadi, A.A. (2008). Trends in stimulated Brillouin scattering and optical phase conjugation. Laser Part. Beams 26, 297362.
Sun, X., Yu, R.Q., Xu, C.Q., Hor, T.S.A. & Ji, W. (1998). Broadband Optical limiting with multiwalled carbon nanotubes. Appl. Phys. Lett. 73, 36323634.
Vivien, L., Anglaret, E., Riehl, D., Hache, F., Bacou, F., Andrieux, M., Lafonta, F., Journet, C., Goze, C., Brunet, M. & Bernier, P. (2000). Optical limiting properties of singlewall carbon nanotubes. Opt. Commun. 174, 271275.
Vincent, D. (2001). Optical limiting threshold in carbon suspensions and reverse saturable absorber materials. Appl. Opt. 40, 66466653.
Wang, S.Y., Lu, Z.W., Lin, D.Y., Ding, L. & Jiang, D.B. (2007). Investigation of serial coherent laser beam combination based on Brillouin amplification. Laser Part. Beams 25, 7983.
Wang, J. & Blau, W.J. (2008). Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes. Appl. Phys. B 91, 521524.
Yoshida, H., Fujita, H., Nakatsuka, M., Ueda, T. & Fujinoki, A. (2007). Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength. Laser Part. Beams 25, 481488.
Yoshida, H., Kmetik, V., Fujita, H., Nakatsuka, M., Yamanaka, T. & Yoshida, K. (1997). Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror. Appl. Opt. 36, 37393744.
Zhang, Y.D., Zhang, Y.J., Yuan, P., Sun, X.T., Xu, J.Z. & Zhu, J.J. (2005 a). Optical limiting behavior of nano-gold self-assembled multi-wall carbon nanotube. Chin. Opt. Lett. 3, 292294.
Zhang, P., Niu, Y.X., He, C.J. & Yu, Y. (2005 b). Z-scan experiment on soluble carbon nanotubes. Acta Phys. Sin. 55, 27302734(in Chinese).
Zhou, Y.H., Tian, Y.P. & Wu, J.Y. (2007). Optical properties of carbon nanotubes and their applications in optical limiting. Chem. Indu. Times 21, 4042(in Chinese).

Keywords

Investigation of optical limiting based on the combination of stimulated Brillouin scattering and carbon nanotube/HT-270 suspension

  • W.L.J. Hasi (a1), Z.W. Lu (a1), M.L. Fu (a1), H.H. Lu (a1), S. Gong (a1), D.Y. Lin (a1) and W.M. He (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed