Skip to main content
×
×
Home

Laser-assisted proton collision on light nuclei at moderate energies

  • I.F. Barna (a1) (a2) and S. Varró (a1) (a2)
Abstract

We present a non-relativistic analytic quantum mechanical model to calculate angular differential cross-sections for laser-assisted proton nucleon scattering on a Woods–Saxon optical potential where the nth-order photon absorption is taken into account simultaneously. With this novel description we can integrate two well-established fields, namely low-energy nuclear physics and multi-photon processes together. As a physical example we calculate cross-sections for proton–12C collision at 49 MeV in the laboratory frame in various realistic laser fields. We consider optical Ti:sapphire and X-ray lasers with intensities which are available in existing laser facilities or in the future ELI or X-FEL.

Copyright
Corresponding author
Address correspondence and reprint requests to: I. F. Barna, Wigner Research Centre of the Hungarian Academy of Sciences, Konkoly Thege Miklós út 29-33, 1121 Budapest, Hungary. E-mail: barna.imre@wigner.mta.hu
References
Hide All
Abdul-Jalil, I. & Jackson, D.F. (1979). Energy dependence of the optical potential for proton scattering from light nuclei. J. Phys. G: Nucl. Phys. 5, 1699.
Abramowitz, M. & Stegun, I.A. (1972). Handbook of Mathematical Functions, chap. 9, p. 364. 10 edn. Applied Mathematics Series, Washington, D.C.: U.S. Government Printing Office.
Barna, I.F., Apagyi, B. & Scheid, W. (2000). Localization of nonlocal potentials by a Taylor expansion method. J. Phys. G: Nucl. Phys. 26, 323331.
Bergou, J. (1980). Wavefunctions of a free electron in an external field and their application in intense field interactions. I. Non-relativistic treatment. J. Phys A: Math. Gen. 13, 28172822.
Bergou, J. & Varró, S. (1980). Wave functions of a free electron in an external field and their application in intense field interactions, II. Relativistic treatment. J. Phys. A: Math. Gen. 13, 28232837.
Bunkin, F.V. & Fedorov, M.V. (1965). Bremsstrahlung in a strong radiation field. Zh. Eksp. Teor. Fiz. 49, 12151221.
Bunkin, F.V., Kazakov, A.E. & Fedorov, M.V. (1973). Interaction of intense optical radiation with free electrons (nonrelativistic case). Usp. Fiz. Nauk. 15, 416435.
Di Piazza, A., Müller, C., Hatsagortsyan, K.Z. & Keitel, C.H. (2012). Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 11771228.
Ehlotzky, F., Jaron, A. & Kaminski, J. (1998). Electron–atom collisions in a laser field. Phys. Rep. 297, 63153.
Faisal, F.H.M. (1973). Collision of electrons with laser photons in a background potential. J. Phys. B: At. Mol. Phys. 6, L312L315.
Faisal, F.H.M. (1987). Theory of Multiphoton Processes. New York: Plenum Press.
Gontier, Y. & Rahman, N. (1974). Intense electromagnetic field and multiphoton processes. Lett. al Nuovo Cim. 9, 537540.
Greiner, W. & Maruhn, J.A. (1996). Nuclear Models. Heidelberg, Germany: Springer-Verlag.
Gunst, J., Litvinov, Y.A., Keitel, C.H. & Pálffy, A. (2014). Dominant secondary nuclear photoexcitation with the X-ray free-electron laser. Phys. Rev. Lett. 112, 082501 (pages 5).
Habs, D., Tajima, T., Schreiber, J., Barty, C.P.J., Fujiwara, M. & Thirolf, P.G. (2009). Vision of nuclear physics with photo-nuclear reactions by laser-driven beams. Eur. Phys. J. D 55, 279285.
Hlophe, L., Elster, C., Johnson, R.C., Upadhyay, N.J., Nunes, F.M., Arbanas, G., Eremenko, V., Escher, J.E. & Thompson, I.J. (TORUS Collaboration) (2013). Separable representation of phenomenological optical potentials of Woods-Saxon type. Phys. Rev. C 88, 064608, (pages 11).
Hodgson, P.E. (1994). The Nucleon Optical Model. Singapore: World Scientific Co. Pvt. Ltd.
Kornev, A.S. & Zon, B.A. (2007). Nuclear excitation by the atomic electron rescattering in a laser field. Laser Phys. Lett. 4, 588.
Kroll, N.M. & Watson, K.M. (1973). Charged-particle scattering in the presence of a strong electromagnetic wave. Phys. Rev. A 8, 804809.
Ledingham, K.W.D. (2005). Laser induced nuclear physics and applications. Nucl. Phys. A 752, 633644.
Pahlavani, M.R. & Morad, R. (2010). Validity of born approximation for nuclear scattering in path integral representation. Adv. Stud. Theor. Phys., 4, 393404.
Rudchik, A., Shyrma, Y., Kemper, K., Rusek, K., Koshchy, E., Kliczewski, S., Novatsky, B., Ponkratenko, O., Piasecki, E., Romanyshyna, G., Stepanenko, Y., Strojek, I., Sakuta, S., Budzanowski, A., Głowacka, L., Skwirczyńska, I., Siudak, R., Choiński, J. & Szczurek, A. (2010). Isotopic effects in elastic and inelastic 12C + 16, 18O scattering. Eur. Phys. J. A 44, 221231.
Varner, R., Thompson, W., McAbee, T., Ludwig, E. & Clegg, T. (1991). A global nucleon optical model potential. Phys. Rep. 201, 57119.
von Geramb, H.V. Ed. (1979). Microscopic Optical Potentials, Lecture Notes in Physics. Vol. 89, Hamburg Topical Workshop on Nuclear Physics, Heidelberg, Germany: Springer-Verlag Berlin Heidelberg.
Woods, R.D. & Saxon, D.S. (1954). Diffuse surface optical model for nucleon-nuclei scattering. Phys. Rev. 95, 577578.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed