Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T11:08:21.051Z Has data issue: false hasContentIssue false

Nano-structured lithium-tin plane fabrication for laser produced plasma and extreme ultraviolet generation

Published online by Cambridge University Press:  08 August 2008

Keiji Nagai*
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
Q. Gu
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
T. Norimatsu
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
S. Fujioka
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
H. Nishimura
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
N. Miyanaga
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
K. Nishihara
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
Y. Izawa
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
K. Mima
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
*
Address correspondence and reprint requests to: Keiji Nagai, Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka, Japan. E-mail: knagai@ile.osaka-u.ac.jp

Abstract

This paper deals with a lithium/tin combined target to increase the conversion efficiency of extreme ultraviolet (EUV) of 13.5 nm emission from laser-produced plasma. The bilayer target of glass/lithium (20 nm)/tin (50 nm) exhibits a sharp and strong emission in comparison with a Sn bulk target. The reverse coating of glass/tin/lithium was unstable and EUV could not be observed. By using nano-porous SnO2 and an electrochemical deposition of lithium, nano-structured lithium/tin composite was prepared, and was stable without deliquescence of lithium.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aota, T. & Tomie, T. (2005). Ultimate efficiency of extreme ultraviolet radiation from a laser-produced plasma. Phys. Rev. Lett. 94, 015004.CrossRefGoogle ScholarPubMed
Bagchi, S., Prem Kiran, P., Bhuyan, M.K., Bose, S., Ayyub, P., Krishnamurthy, M. & Ravindra Kumar, G. (2008). Hotter electrons and ions from nano-structured surfaces. Laser Part. Beams 26, 259264.CrossRefGoogle Scholar
Bakshi, V. (2006). EUV Sources for Lithigraphy. Bellingham: SPIE Press.CrossRefGoogle Scholar
Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, Y., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, Y., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, pp. 127141.CrossRefGoogle Scholar
Fujioka, S., Nishimura, H., Nishihara, K., Murakami, M., Kang, Y.-G., Gu, Q., Nagai, K., Norimatsu, T., Miyanaga, N., Izawa, Y., Mima, K., Shimada, Y., Sunahara, A. & Furukawa, H. (2005 b). Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet source applications. Appl. Phys. Lett. 87, 241503.CrossRefGoogle Scholar
Fujioka, S., Nishimura, H., Nishihara, K., Sasaki, A., Sunahara, A., Okuno, T., Ueda, N., Ando, T., Tao, Y.Z., Shimada, Y., Hashimoto, K., Yamaura, M., Shigemori, K., Nakai, M., Nagai, K., Norimatsu, T., Nishikawa, T., Miyanaga, N., Izawa, Y. & Mima, K. (2005 a). Opacity effect on extreme ultra-violet radiation from laser-produced tin plasmas. Phys. Rev. Lett. 95, 235004.CrossRefGoogle Scholar
Gu, Q.C., Nagai, K., Nakai, M. & Norimatsu, T. (2006). Polymorphic tin dioxide synthesis via sol-gel mineralization of ethyl-cyanoethyl cellulose lyotropic liquid crystals. Colloid Polym. Sci. 284, 429434.CrossRefGoogle Scholar
Gu, Q.C., Nagai, K., Norimatsu, T., Fujioka, S., Nishimura, H., Nishihara, K., Miyanaga, N. & Izawa, Y. (2005). Preparation of low-density macrocellular tin dioxide foam with variable window size. Chem. Mater. 17, 11151122.CrossRefGoogle Scholar
Harilal, S.S., O'Shay, B., Tillack, M.S., Tao, Y., Paguio, R., Nikroo, A. & Back, C.A. (2006). Spectral control of emissions from tin doped targets for extreme ultraviolet lithography. J. Phys. D: Appl. Phys. 39, 484487.CrossRefGoogle Scholar
Hayden, P., Cummings, A., Murphy, N., O'Sullivan, G., Sheridan, P., White, J. & Dunne, P. (2006). 13.5 nm extreme ultraviolet emission from tin based laser produced plasma sources. J. Appl. Phys. 99, 093302.CrossRefGoogle Scholar
Higashiguchi, T., Hamada, M. & Kubodera, S. (2007). Development of a liquid tin microjet target for an efficient laser-produced plasma extreme ultraviolet source. Rev. Sci. Instr. 78, 036106.CrossRefGoogle ScholarPubMed
Hund, J.F., Paguio, R.R., Frederick, C.A., Nikroo, A. & Thi, M. (2006). silica, metal oxide, and doped aerogel development for target applications. Fusion Sci. Technol. 49, 669675.CrossRefGoogle Scholar
Khalenkov, A.M., Borisenko, N.G., Kondrashov, V.N., Merkuliev, Yu.A., Limpouch, J. & Pimenov, V.G. (2006). Experience of micro-heterogeneous target fabrication to study energy transport in plasma near critical density. Laser Part. Beams 24, 283290.CrossRefGoogle Scholar
Kolacek, K., Schmidt, J., Prukner, V., Frolov, O. & Straus, J. (2008). Ways to discharge-based soft X-ray lasers with the wavelength λ < 15 nm. Laser Part. Beams 26, 167178.CrossRefGoogle Scholar
Nagai, K. (2008). Nanomaterials to generate extreme ultraviolet (EUV) light. In Encyclopedia of Nanoscience and Nanotechnology 2nd ed. (Nalwa, E.H., ed.). Stevenson Ranch, CA: American Scientific Publishers.Google Scholar
Nagai, K., Azechi, H., Ito, F., Iwamoto, A., Izawa, Y., Johzaki, T., Kodaka, R., Mima, K., Mito, T., Nakai, M., Nemoto, N., Norimatsu, T., Ono, Y., Shigemori, K., Shiraga, H. & Tanaka, K.A. (2005). Foam materials for cryogenic targets of fast ignition realization experiment (FIREX). Nucl. Fusion 45, 12771283.CrossRefGoogle Scholar
Nagai, K., Gu, Q.C., Gu, Z.Z., Okuno, T., Fujioka, S., Nishimura, H., Tao, Y.Z., Yasuda, Y., Nakai, M., Norimatsu, T., Shimada, Y., Yamaura, M., Yoshida, H., Nakatsuka, M., Miyanaga, N., Nishihara, K. & Izawa, Y. (2006 b). Angular distribution control of extreme ultraviolet radiation from laser-produced plasma by manipulating the nanostructure of low-density SnO2 targets. Appl. Phys. Lett. 88, 094102.CrossRefGoogle Scholar
Nagai, K., Nishimura, H., Okuno, T., Hibino, T., Matsui, R., Tao, Y.Z., Nakai, M., Norimatsu, T., Miyanaga, N., Nishihara, K. & Izawa, Y. (2004 b). Nanoporous and low-density materials for laser produced extreme uv light source. Trans. Mater. Res. Soc. Jpn. 29, 943946.Google Scholar
Nagai, K., Norimatsu, T. & Izawa, Y. (2004 a). Control of micro- and nano-structure in ultralow-density hydrocarbon foam. Fusion Sci. Technol. 45, 7983.CrossRefGoogle Scholar
Nagai, K., Wada, D., Nakai, M. & Norimatsu, T. (2006 a). Electrochemical fabrication of low density metal foam with mono-dispersed-sized micro- and submicro-meter pore. Fusion Sci. Technol. 49, 686696.CrossRefGoogle Scholar
Nagano, A., Inoue, T., Nica, P.-E., Amano, S., Miyaoto, S. & Mochizuki, T. (2007). Extreme ultraviolet source using a forced recombination process in lithium plasma generated by a pulsed laser. Appl. Phys. Lett. 90, 151502.CrossRefGoogle Scholar
Nishihara, K., Sasaki, A., Sunahara, A. & Nishikawa, T. (2006). Conversion Efficiency of LPP sources. Bellingham, WA: SPIE Press.CrossRefGoogle Scholar
Nishihara, K., Sunahara, A. & Kang, Y.G. (2007). Theoretical Guideline of LPP-EUV Sources for HVM. Osaka, Japan: ILE Osaka University.Google Scholar
Okuno, T., Fujioka, S., Nishimura, H., Tao, Y., Nagai, K., Gu, Q., Ueda, N., Ando, T., Nishihara, K., Norimatsu, T., Miyanaga, N., Izawa, Y., Mima, K., Sunahara, A., Furukawa, H. & Sasaki, A. (2006). Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas. Appl. Phys. Lett. 88, 161501.CrossRefGoogle Scholar
Orlov, N.Yu., Gus'kov, S.Yu., Pikuz, S.A., Rozanov, V.B., Shelkovenko, T.A., Zmitrenko, N.V. & Hammer, D.A. (2007). Theoretical and experimental studies of the radiative properties of hot dense matter for optimizing soft X-ray sources. Laser Part. Beams 25, 415423.CrossRefGoogle Scholar
Pan, C., Gu, Z.Z., Nagai, K., Norimatsu, T., Birou, T., Hashimoto, K. & Shimada, Y. (2006). SnO2 target with controllable microstructure and thickness for generating extreme ultraviolet light. J. Appl. Phys. 100, 016104.CrossRefGoogle Scholar
Shimada, Y., Nishimura, H., Nakai, M., Hashimoto, K., Yamaura, M., Tao, Y., Shigemori, K., Okuno, T., Nishihara, K., Kawamura, T., Sunahara, A., Nishikawa, T., Sasaki, A., Nagai, K., Norimatsu, T., Fujioka, S., Uchida, S., Miyanaga, N., Izawa, Y. & Yamanaka, C. (2005). Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams. Appl. Phys. Lett. 86, 051501.CrossRefGoogle Scholar
Sizyuk, V., Hassanein, A. & Sizyuk, T. (2007). Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications. Laser Part. Beams 25, 143154.CrossRefGoogle Scholar
Tao, Y., Farshad, S., Nishimura, H., Matsui, R., Hibino, T., Okuno, T., Fujioka, S., Nagai, K., Norimatsu, T., Nishihara, K., Miyanaga, N., Izawa, Y., Sunahara, A. & Kawamura, T. (2004). Monochromatic imaging and angular distribution measurements of extreme ultraviolet light from laser-produced Sn and SnO2 plasmas. Appl. Phys. Lett. 85, 19191921.CrossRefGoogle Scholar
Uchida, S., Shimada, Y., Yamaura, M., Takemoto, S., Fujioka, S., Nishimura, H., Nagai, K. & Nishihara, K. (2005). Foil Target Acceleration Providing Mass Limited Target for EUV Laser Plasma Source. Osaka, Japan: ILE Osaka University.Google Scholar
Xu, Y., Jiang, S., Lai, D., Pei, W., EI Ding, Y., Chang, T., Lan, K., Li, S. & Feng, T. (2006). Two-photon group radiation transfer study in low-density foam cylinder. Laser Part. Beams 24, 495501.CrossRefGoogle Scholar
Yang, H., Nagai, K., Nakai, M. & Norimatsu, T. (2008). Thin shell aerogel fabrication for FIREX-I targets using high viscosity (phloroglucinol carboxylic acid)/formaldehyde solution. Laser Part. Beams 26, doi:10.1017/S0263034608000451CrossRefGoogle Scholar
Yasuda, Y., Gu, Q.C., Nagai, K., Nakai, M., Norimatsu, T., Fujioka, S., Nishimura, H. & Nakatsuka, M. (2006). Tin-polymer composite target on a rotating drum as high-repeating laser irradiation for extreme ultraviolet generation. Fusion Sci. Technol. 49, 691694.CrossRefGoogle Scholar
Yasuda, Y., Nagai, K., Norimatsu, T., Fujioka, S., Nishimura, H., Nishihara, K., Izawa, Y. & Mima, K. (2007). Development of “punching-out target” to generate extreme ultraviolet (EUV) light. Fusion Sci. Technol. 51, 769771.CrossRefGoogle Scholar