Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T04:10:45.283Z Has data issue: false hasContentIssue false

Numerical investigation of the effects of smoothing by spectral dispersion on stimulated rotational Raman scattering

Published online by Cambridge University Press:  06 February 2013

X.M. Fan
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
Z.W. Lu*
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
D.Y. Lin
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
F. Yang
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
Y. Liu
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
Y.K. Dong
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
C.Y. Zhu
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
W.L.J. Hasi
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
*
Address correspondence and reprint requests to: Z.W. Lu, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, P. O. Box 3031, Harbin 150080, China. E-mail: zw_lu@sohu.com

Abstract

The effect of smoothing by spectral dispersion (SSD) on stimulated rotational Raman scattering (SRRS) in air has been investigated both numerically and theoretically. The suppression effect of SSD on SRRS process is verified and it is demonstrated and proposed that the suppression effect is attributed to two aspects: the decreasing of the laser fluence modulation degree and the reducing of Stokes gain coefficient caused by the temporal and spatial variation of the phase of the incident laser pulse. The simulation results show that the SRRS threshold distance can be lengthened by choosing appropriate SSD parameters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boehly, T.R., Babushkin, A., Bradley, D.K., Craxton, R.S., Delettrez, J.A., Epstein, R., Kessler, T.J., Knauer, J.P., Mccrory, R.L., Mckenty, P.W., Meyerhofer, D.D., Regan, S., Seka, W., Skupsky, S., Smalyuk, V.A., Town, R.P.J. & Yaakobi, B. (2000). Laser uniformity and hydrodynamic stability experiments at the OMEGA laser facility. Laser Part. Beams 18, 1119.CrossRefGoogle Scholar
Bordenave, E. & Chies, T. (2006). Numerical simulations of stimulated Raman scattering in LIL transport section with Miro propagation code and comparison with ENOLIT diagnostic results. J. Phys. IV 133, 661663.Google Scholar
Fu, F.X. & Zhang, B. (2011). Recovery of High Frequency Phase of Laser Beam with Wavefront Distortion. Chin. J. Lasers 38, 040209 16.Google Scholar
Herring, G.C., Mark, J.D. & William, K.B. (1986). Temperature and wavelength dependence of the rotational Raman gain coefficient in N2. Opt. Lett. 11, 348350.CrossRefGoogle ScholarPubMed
Henesian, M.A., Swift, C.D. & Murray, J.R. (1985). Stimulated rotational Raman scattering in nitrogen in long air paths. Opt. Lett. 10, 565567.CrossRefGoogle ScholarPubMed
Joshua, E.R. (1997). Comparison of beam-smoothing methods for direct-drive inertial confinement fusion. J. Opt. Soc. Am. B 14, 16441671.Google Scholar
Kurnit, N.A., Shimada, T. & Sorem, M.S. (1987). Measurement and Control of Optical Nonlinearities of Importance to Glass Laser Fusion Systems. Los Alamos National Laboratory Report LAUR 87–0097.Google Scholar
Leung, K., Oron, M., Klimek, D., Holmes, R. & Flusberg, A. (1988). Observation of parametric gain suppression in rotational Raman transitions of N2 and H2. Opt. Lett. 13, 3335.CrossRefGoogle ScholarPubMed
Matsushima, I., Owadano, Y., Matsumoto, Y., Okuda, I., Tomie, T., Koyama, K., Staffin, R. & Yano, M. (1993). Beam-smoothing effect in broad-band random-phase irradiation. Laser Part. Beams 11, 385390.CrossRefGoogle Scholar
Miyaji, G., Miyanaga, N., Urushihara, S., Suzuki, K., Matsuoka, S., Nakatsuka, M., Morimoto, A. & Kobayashi, T. (2002). Three-directional spectral dispersion for smoothing of a laser irradiance profile. Opt. Lett. 27, 725727.CrossRefGoogle ScholarPubMed
Omatsu, T., Kong, H.J., Park, S., Cha, S., Yoshida, H., Tsubakimoto, K., Fujita, H., Miyanaga, N., Nakatsuka, M., Wang, Y., Lu, Z., Zheng, Z., Zhang, Y., Kalal, M., Slezak, O., Ashihara, M., Yoshino, T., Hayashi, K., Tokizane, Y., Okida, M., Miyamoto, K., Toyoda, K., Grabar, A.A., Kabir, Md. M., Oishi, Y., Suzuki, H., Kannari, F., Schaefer, C., Pandiri, K.R., Katsuragawa, M., Wang, Y.L., Lu, Z.W., Wang, S.Y., Zheng, Z.X., He, W.M., Lin, D.Y., Hasi, W.L.J., Guo, X.Y., Lu, H.H., Fu, M.L., Gong, S., Geng, X.Z., Sharma, R.P., Sharma, P., Rajput, S., Bhardwaj, A.K., Zhu, C.Y. & Gao, W. (2012). The current trends in SBS and phase conjugation. Laser Part. Beams 30, 117174.CrossRefGoogle Scholar
Paul, A. Treadwell. (2007). Four-dimensional treatment of frequency conversion and the effect of smoothing by spectral dispersion. Proc. of SPIE 6455, 64550M.Google Scholar
Rokni, M. & Flusberg, A. (1986). Stimulated rotational raman scattering in the atmosphere. IEEE J. Quantum Electron. QE-22, 11021107.CrossRefGoogle Scholar
Skeldon, M.D. & Bahr, R. (1991). Stimulated rotational Raman scattering in air with a high-power broadband laser. Opt. Lett. 16, 366368.CrossRefGoogle ScholarPubMed
Skupsky, S., Short, R.W., Kessler, T., Craxton, R.S., Letzring, S. & Soures, J.M. (1989). Improved laser-beam uniformity using the angular dispersion of frequency-modulated light. J. Appl. Phys. 66, 34563462.CrossRefGoogle Scholar
Wang, J., Zhang, X.M., Han, W., Li, F.Q., Zhou, L.D., Feng, B. & Xiang, Y. (2011). Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths. Chin. Phys. Lett. 28, 084211 14.Google Scholar
Wegner, P., Auerbach, J., Biesiada, T., Dixit, S., Lawson, J., Menapace, J., Parham, T., Swift, D., Whitman, P. & Williams, W. (2004). NIF final optics system: frequency conversion and beam conditioning. Proc. SPIE 5341, 180189.CrossRefGoogle Scholar
Williams, W., Auerbam, J., Hunt, J., Lawson, L., Manes, K., Orth, C., Sacks, R., Trenholme, J. & Wegner, P. (1997). NIF optics phase gradient specification. UCRL-ID-127297.Google Scholar
Ying, L., Kessler, T.J., Armstrong, J.J. & Lawrence, G.N. (1993). Laser system power balance effects from stimulated Rotational Raman Scattering in air. SPIE 1870, 1425.Google Scholar
Ying, L., Kessler, T. & George, N. L. (1992). Raman scattering in air: A four-dimensional system analysis. SPIE 1625, 158166.Google Scholar
Zhang, R., Wang, J.J., Su, J.Q., Liu, L.Q., Tang, J., Liu, H., Jing, F. & Zhang, X.M. (2010). Experimental research on smoothing by spectral dispersion based on wave-guide phase modulator. Acta. Phys. Sin. 59, 62906298.CrossRefGoogle Scholar