Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T20:02:03.228Z Has data issue: false hasContentIssue false

Observations of two-stream collisional instability due to interaction of monoenergetic relativistic electron beams with gas

Published online by Cambridge University Press:  09 March 2009

V.M. Batenin
Affiliation:
Institute for High Temperatures, USSR Academy of Sciences, Izhorskaya str., 13/19, 127412 Moscow, Russia
A.V. Danilov
Affiliation:
Institute for High Temperatures, USSR Academy of Sciences, Izhorskaya str., 13/19, 127412 Moscow, Russia
A.O. Ikonnikov
Affiliation:
Institute for High Temperatures, USSR Academy of Sciences, Izhorskaya str., 13/19, 127412 Moscow, Russia
S.A. Ilchenko
Affiliation:
Institute for High Temperatures, USSR Academy of Sciences, Izhorskaya str., 13/19, 127412 Moscow, Russia
A.T. Kunavin
Affiliation:
Institute for High Temperatures, USSR Academy of Sciences, Izhorskaya str., 13/19, 127412 Moscow, Russia
A.V. Markov
Affiliation:
Institute for High Temperatures, USSR Academy of Sciences, Izhorskaya str., 13/19, 127412 Moscow, Russia
D.V. Sapozhnikov
Affiliation:
Institute for High Temperatures, USSR Academy of Sciences, Izhorskaya str., 13/19, 127412 Moscow, Russia
P.M. Tokar
Affiliation:
Institute for High Temperatures, USSR Academy of Sciences, Izhorskaya str., 13/19, 127412 Moscow, Russia
I.V. Vovk
Affiliation:
Institute for High Temperatures, USSR Academy of Sciences, Izhorskaya str., 13/19, 127412 Moscow, Russia
V.Y. Yakovlev
Affiliation:
Institute for High Temperatures, USSR Academy of Sciences, Izhorskaya str., 13/19, 127412 Moscow, Russia
V.S. Zhivopistsev
Affiliation:
Institute for High Temperatures, USSR Academy of Sciences, Izhorskaya str., 13/19, 127412 Moscow, Russia

Abstract

We have studied experimentally the beam-plasma two-stream dissipative collisional instability of relativistic electron beams (REB) injected into plasma produced by interaction of REB with neutral nitrogen. The gas pressure ranged from 0.02 to 8 Torr. REB (T = 100 μs, E = 300 keV, 7 = 3–15 A) were injected into gas through a pulsed foilless valve. An external magnetic field was not used. A description of the experimental setup and that of applied diagnostics are presented. In some of the experiments the inner walls of a metallic interaction chamber were covered with microwave-absorbent material. We present the experimental dependence of the critical current of two-stream instability on gas pressure and beam penetration length. We have also measured the distribution of microwave emission along the beam axis. The influence of plasma self-radiation on the instability was observed and is attributed to a feedback. A possible mechanism of the feedback is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramyan, E. A., Al'terkop, B. A. & Kuleshov, G. D. 1984 Intensivniye Electronniye Puchky (Energoatomizdat, Moscow).Google Scholar
Alexandrov, A. F., Bogdankevich, L. S. & Rukhadze, A. A. 1988 Osnovi Electrodinamiki Plasmy (Visshaya Shkola, Moscow).Google Scholar
Al'terkop, B. A., Arutyunyan, S. G. & Rukhadze, A. A. 1979 Sov. Phys. Tech. Phys. 24, 1422.Google Scholar
Alyamovskii, I. V. 1966 Electronniye Puchki i Electronniye Pushky (Sovetskoye Radio, Moscow).Google Scholar
Batenin, V. M. et al. 1989 Preprint No. 6–276, Institute for High Temperatures, USSR Academy of Sciences.Google Scholar
Baitin, A. V., Nikulin, M. G. & Sionov, A. V. 1988 In Proceedings of the Soviet Seminar “Plazmennnaya Electronika” (Har'kov), p. 150.Google Scholar
Benford, G. & Smith, D. F. 1982 Phys. Fluids 25, 1450.CrossRefGoogle Scholar
Bliokh, Y. P. et al. 1989 Fiz. Plazmy (Moscow) 15, 1295.Google Scholar
Dulov, V. G. & Luk'yanov, G. A. 1984 Gazodinamika Protsessov Istecheniya (Nauka, Novosibirsk).Google Scholar
Dzagurov, D. Y. 1980 Thesis, Physikal and Technical Institute, Moscow.Google Scholar
Fainberg, Y. B. 1985 Fiz. Plazmy (Moscow) 11, 1398.Google Scholar
Fainberg, Y. B. & Shapiro, V. D. 1964 Sov. Phys. JETP 47, 1390.Google Scholar
Fainberg, Y. B., Shapiro, V. D. & Shevchenko, V. I. 1969 Sov. Phys. JETP 57, 968.Google Scholar
Fedorchenko, A. M. & Kotsarenko, I. Y. 1981 Absolutnaya i Konvektivnaya Neustoychivost v Plazme i Tverdih Telah (Nauka, Moscow).Google Scholar
Field, L. M. & Spangenberg, K. 1947 Electr. Commun. 24, 108.Google Scholar
Gabovich, M. D., Pleshivtsev, N. V. & Semashko, N. N. 1986 Puchki Ionov i Atomov Dlya Upravlyaemogo Termoyadernogo Sinteza i Tehnologicheskih Tseley (Energoatomizdat, Moscow).Google Scholar
Galeev, A. A. et al. 1977 Sov. Phys. JETP 72, 507.Google Scholar
Ginzburg, V. L. 1964 Propagation of Electromagnetic Waves in Plasma (Pergamon, New York).Google Scholar
Hincel-Lipscer, D. E., Fried, B. D. & Morales, G. I. 1989 Phys. Rev. Lett. 62, 2680.CrossRefGoogle Scholar
Ivanov, A. A. 1977 Fizika Silnoneravnovesnoy Plazmy (Atomizdat, Moscow).Google Scholar
Kiselev, V. A., Berezin, A. K. & Fainberg, Y. B. 1976 Sov. Phys. JETP 71, 193.Google Scholar
Kochmaryov, L. I. et al. 1989 In Proceedings of the 19th International Conference on Phenomena on Ionized Gases, p. 916.Google Scholar
Kochnev, V. A. & Naboko, I. M. 1980 Proikl. Mekh. Tekh. Fiz. 2, 107.Google Scholar
Kondratenko, A. N. 1985 Poverhnostniye i Ob'yemniye Volni v Ogranichennoy Plasme (Energoatomizdat, Moscow).Google Scholar
Kornilov, K. A. et al. 1965 Sov. Phys. Tech. Phys. 35, 1372.Google Scholar
Kuzelev, M. V. et al. 1987 Fiz. Plazmy (Moscow) 13, 1370.Google Scholar
Lee, E. P. 1978 Phys. Fluids 21, 1301.Google Scholar
Levitskii, S. M. & Shashurin, I. P. 1967 Sov. Phys. JETP 52, 350.Google Scholar
Mikhailovskii, A. V. 1978 Teoriya Plazmennih Neustoychivostey, Vol. 1 (Atomizdat, Moscow).Google Scholar
Mirolyubov, N. N. et al. 1963 Metodi Rascheta Electricheskih Poley (Visshaya Shkola, Moscow).Google Scholar
Ristic, V. M., Self, S. A. & Crawford, F. W. 1969 J. Appl. Phys. 40, 5244.CrossRefGoogle Scholar
Robertson, C., Gentle, K. W. & Nielson, P. 1971 Phys. Rev. Lett. 26, 226.CrossRefGoogle Scholar
Rudakov, L. I. 1970 Sov. Phys. JETP 59, 2091.Google Scholar
Rukhadze, A. A. et al. 1977 Fizika Silnotochnih Relyativistskih Elektronnih Puchkov (Atomizdat, Moscow).Google Scholar
Schiller, S., Heisig, U. & Panzer, S. 1976 Electronenstrahltechnologie (VEB Verlag Technik, Berlin).Google Scholar
Sudan, R. I. 1984 In Basic Plasma Physics, Galeev, A. A. & Sudan, R. I., eds. (Amsterdam).Google Scholar
Thode, L.E 1976 Phys. Fluids 17, 931.Google Scholar
Vlasov, M. A. & Nikonov, S. V. 1983 Radiotekh. Elektron. (Moscow) 28, 965.Google Scholar