Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T19:36:54.480Z Has data issue: false hasContentIssue false

Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

Published online by Cambridge University Press:  09 March 2009

Helmut Haseroth
Affiliation:
CERN PS, 1211 Geneva, Switzerland
Heinrich Hora
Affiliation:
University of New South Wales, Sydney 2052, Australia, and Anwenderzentrum, Institute of Technology, Hermann-Geib-Str. 18, 93053 Regensburg, Germany

Abstract

Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 1011 C4+ ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and “hot” electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlstrom, H.G. 1983 Phys. Laser Fusion (Nat. Tech. Inf. Service, Springfield, VA).Google Scholar
Alfven, H. 1988 Laser Part. Beams 6, 385.CrossRefGoogle Scholar
Apollonov, V.V. et al. 1970 JETP Lett. 11, 252.Google Scholar
Ardenne, M. Von 1956 Atomkernenergie 1, 2015.Google Scholar
Amdidouche, Y. et al. 1992 Rev. Sci. Instr. 63, 2838.CrossRefGoogle Scholar
Aydin, M. et al. 1992 Laser Part. Beams 10, 155.CrossRefGoogle Scholar
Barabash, L.Z. et al. 1984 Laser Part. Beams 2, 49.CrossRefGoogle Scholar
Basov, N.G. & Krokhin, O.N. 1964 In 3rd Int. Quantum Electr. Conf. Paris 1963, Grivet, P. and Bloembergen, N., eds. (Dunod, Paris) Vol. 2, p. 1373.Google Scholar
Basov, N.G. et al. 1986 Heating and Compression of Thermonuclear Targets by Laser Beams (Cambridge Univ. Press, Cambridge).Google Scholar
Basov, N.G. et al. 1987 Sov. Phys. JETP 65, 727.Google Scholar
Becker, R. 1980 Proc. ECR Workshop, Darmstadt.Google Scholar
Begay, F. et al. 1983 Observation of High Energy Heavy Ion Velocity Distribution in CO2 Laser-Generated Plasmas, 13th Anomalous Absorption Conference, Banff, June 1983, Los Alamos Nat. Lab., Report LA-UR–83–1603.Google Scholar
Biskamp, D. & Welter, H. 1975 Plasma Physics and Controlled Fusion Research, Tokyo, 1974 (IAEA, Vienna) Vol. 2, p. 507.Google Scholar
Bobin, J.L. 1985 Phys. Rept. 122, 173.CrossRefGoogle Scholar
Bohm, D. & Gross, E.P. 1949 Phys. Rev. 75, 1851.CrossRefGoogle Scholar
Boody, F. et al. 1996 Laser and Part. Beams 14, 443.CrossRefGoogle Scholar
Büchl, K. et al. 1972 In Laser Interaction and Related Plasma Phenomena, Schwarz, H. and Hora, H., eds. (Plenum, New York) Vol. 2, p. 502.Google Scholar
Bykovski, Yu.A. et al. 1971 Sov. Phys.-JETP 33, 706.Google Scholar
Chen, F.F. 1974 In Laser Interaction and Related Plasma Phenomena, Schwarz, H. and Hora, H., eds. (Plenum, New York) Vol. 3A, p. 291.CrossRefGoogle Scholar
Chen, H.H. & Liu, C.S. 1976 Phys. Rev. Lett. 37, 693.CrossRefGoogle Scholar
Chiao, R.Y. et al. 1964 Phys. Rev. Lett. 13, 479.CrossRefGoogle Scholar
Chirkov, B.V. 1990 J. Phys. B23, L103.Google Scholar
Cichitelli, L. et al. 1990 Phys. Rev. A41, 3121.Google Scholar
Clark, P.J. et al. 1985 In AlPProc. 130 Laser Acceleration of Particles, Joshi, C. and Katsuleas, T., eds. (Amer. Inst. Phys., New York), p. 380.Google Scholar
Collier, J. et al. 1996 Laser and Part. Beams 14, 283.CrossRefGoogle Scholar
Dawson, J.M. 1964 Phys. Fluids 7, 981.CrossRefGoogle Scholar
Deng, X. 1986 Appl. Opt. 25, 377.CrossRefGoogle Scholar
Denisov, N.G. 1957 Sov. Phys. JETP 4, 544.Google Scholar
Drake, P.R. 1988 Laser Part. Beams 6, 437.CrossRefGoogle Scholar
Drake, P.R. et al. 1994 Phys. Rev. Lett. 13, 2104.Google Scholar
Dragila, R. & Hora, H. 1982 Phys. Fluids 17, 788.Google Scholar
Dubois, D.F. & Goldman, M.V. 1967 Phys. Rev. 164, 201.CrossRefGoogle Scholar
Dubois, D.F. 1974 Laser Interaction and Related Plasma Phenomena, Schwartz, H. and Hora, H., eds. (Plenum, New York), Vol. 3A, p. 267.CrossRefGoogle Scholar
Ehler, A.W. 1975 J. Appl. Phys. 46, 2464.CrossRefGoogle Scholar
Eidmann, K. & Sigel, R. 1974 Laser Interaction and Related Plasma Phenomena, Schwarz, H. and Hora, H., eds. (Plenum, New York), Vol. 4B, p. 667.CrossRefGoogle Scholar
Eliezer, S. & Hora, H. 1993 Nuclear Fusion by Inertial Confinement, Velarde, G., Ronen, Y., and Martinez-Val, J.M., eds. (IRC, New York), p. 42.Google Scholar
Eliezer, S. & Hora, H. 1989 Phys. Rep. 172, 339.CrossRefGoogle Scholar
Eliezer, S. & Hora, H. 1989 a Plasma Physics Varenna School of Inertial Confinement Fusion, Caldriola, P., ed. (Soc. Fiz. Ital., Bologna), p. 375.Google Scholar
Engelhardt, A.G. et al. 1970 Phys. Fluids 13, 212.CrossRefGoogle Scholar
Fälthammar, C.G. 1988 Laser Part. Beams 8, 437.CrossRefGoogle Scholar
Försterling, K. 1950 Archiv Elektr. Übertragungstech. 5, 209.Google Scholar
Gitomer, S.J. 1984, 20 Years of Plasma Research, International Institute of Theoretical Physics, Trieste, September.Google Scholar
Gitomer, S.J. et al. 1986 Phys. Fluids 29, 2679.CrossRefGoogle Scholar
Giulietti, A. et al. 1989 Laser Interaction with Plasmas, Velarde, G. et al. , eds. (World Scientific, Singapore), p. 208.Google Scholar
Goldsworthy, M.P. et al. 1986 IEEE Trans. Plasma Sci. PS14, 823.CrossRefGoogle Scholar
Haseroth, H. & Hora, H. 1993 Advances of Accelerator Physics and Technologies, Schopper, H., ed. (World Scientific, Singapore), p. 465.Google Scholar
Häuser, T. et al. 1988 J. Opt. Soc. Amer. B5, 2029.CrossRefGoogle Scholar
Häuser, T. et al. 1992 Phys. Rev. A45, 1278.CrossRefGoogle Scholar
Henkelmann, T. et al. 1991 Nucl. Instr. Meth. B56/57, 1152.CrossRefGoogle Scholar
Henkelmann, T. et al. 1992 Rev. Sci. Instr. 63, 2828.CrossRefGoogle Scholar
Hershkowitz, N. 1985 Space Sci. Rev. 41, 351.CrossRefGoogle Scholar
Hill, C.E. & Langbein, K. 1966 Rev. Sc. Instr. (Int. Conf. on Ion Sources, Vancouver 1995, in print).Google Scholar
Honig, R.E. 1963 Appl. Phys. Lett. 3, 8.CrossRefGoogle Scholar
Höpfl, R. et al. 1995 German Patent Appl. 195 13 566.0.Google Scholar
Hora, H. et al. 1957 Zeitschr. f. Naturforsch. A 22, 278.CrossRefGoogle Scholar
Hora, H. 1969 Phys. Fluids 12, 182CrossRefGoogle Scholar
Hora, H. 1969a Zeitschr. f. Physik 216, 156.Google Scholar
Hora, H. 1971 Laser Interaction and Related Plasma Phenomena, Schwarz, H. and Hora, H., eds. (Plenum, New York), Vol. 1, p. 273.CrossRefGoogle Scholar
Hora, H. 1975 J. Opt. Soc. Amer. 65, 882.CrossRefGoogle Scholar
Hora, H. & Kane, E.L. 1977 Appl. Phys. 13, 165.CrossRefGoogle Scholar
Hora, H. et al. 1980 US-Pat. 4,199,685.Google Scholar
Hora, H. 1981 Nuovo Cimento B 64, 1.CrossRefGoogle Scholar
Hora, H. 1982 Opt. Comm. 41, 268.CrossRefGoogle Scholar
Hora, H. et al. 1984 Phys. Rev. Lett. 53, 1650.CrossRefGoogle Scholar
Hora, H. 1985 Phys. Fluids 28, 3706.CrossRefGoogle Scholar
Hora, H. & Ghatak, A.K. 1985a Phys. Rev. A 31, 3473.CrossRefGoogle Scholar
Hora, H. et al. 1989 IEEE Trans. Plasma Sci. PS-17, 284.CrossRefGoogle Scholar
Hora, H. 1991 Plasmas at High Temperature and Density (Springer-Verlag, Heidelberg).Google Scholar
Hora, H. & Aydin, M. 1992 Phys. Rev. A 45, 6123.CrossRefGoogle Scholar
Hora, H. 1996 Nonlinear Force and Ponderomotion, Inst. Laser E., Osaka Univ.Google Scholar
Hora, R.H. et al. 1992 Laser Part. Beams 10, 175.CrossRefGoogle Scholar
Hughes, R.H. et al. 1980 J. Appl. Phys. 51, 4088.CrossRefGoogle Scholar
Joshi, C. & Corkum, P.B. 1995 Physics Today 48(1), 36.CrossRefGoogle Scholar
Jones, D.A. 1982 Phys. Fluids 25, 2295.CrossRefGoogle Scholar
Kane, E.L. & Hora, H. 1978 Sov. J. Quant. Electron. 8, 7.CrossRefGoogle Scholar
Korschinek, G. & Sellmair, J. 1986 Rev. Sci. Instr. 57, 745.CrossRefGoogle Scholar
Korschinek, G. & Henkelmann, T. 1991 Nucl. Instr. Meth. A 302, 376.CrossRefGoogle Scholar
Kato, Y. et al. 1984 Phys. Rev. Lett. 53, 1057.CrossRefGoogle Scholar
Kentwell, G.W. & Hora, H. 1970 Plasma Phys. 22, 1051.Google Scholar
Key, M. 1991 Phys. Worlds, 8 52.CrossRefGoogle Scholar
Korobkin, V.V. & Alcock, A.J. 1968 Phys. Rev. Lett. 21, 1433.CrossRefGoogle Scholar
Kruer, W. 1986 Physics of Laser Plasma Interaction (Addison-Wesley, Reading, MA).Google Scholar
Kugler, H. & Haseroth, H. 1996 (private comm.).Google Scholar
Kutner, V.B. et al. 1990 The Laser Ion Source of Multiply Charged Ions, Conference Seminar, Dubna.CrossRefGoogle Scholar
Labaune, C. et al. 1985 Phys. Rev. A 22, 577.CrossRefGoogle Scholar
Lädrach, P. & Balmer, J.E. 1979 Opt. Commun. 31, 350.CrossRefGoogle Scholar
Lalousis, P. 1983 Laser Part. Beams 1, 283.CrossRefGoogle Scholar
Landau, L.D. 1946 J. Phys. USSR 10, 25.Google Scholar
Langbein, K. et al. 1990 Rev. Sci. Instr. 61, 327.CrossRefGoogle Scholar
Langmuir, I. 1929 Phys. Rev. 33, 954.CrossRefGoogle Scholar
Lehmberg, R.H. & Obenschain, S.P. 1983 Opt. Commun. 46, 27.CrossRefGoogle Scholar
Lehmberg, R.H. et al. 1987 J. Appl. Phys. 62, 2680.CrossRefGoogle Scholar
Lichtman, D. & Ready, J.F. 1963 Phys. Rev. Lett. 10, 342.CrossRefGoogle Scholar
Linlor, W.I. 1963 Appl. Phys. Lett. 3, 210.CrossRefGoogle Scholar
Liu, C.S. & Rosenbluth, M.N. 1974 Phys. Fluids 17, 778.Google Scholar
Lotz, W. 1967 Zeitschr. Physik 206, 205.CrossRefGoogle Scholar
Liu, C.S. & Rosenbluth, M.N. 1974 Phys. Fluids 17, 778.Google Scholar
Lotz, W. 1967 Zeitschr. Physik 206, 205.CrossRefGoogle Scholar
Luther-Davies, B. & Roce, A.V. 1993 Phys. Rev. A 41, 2154.Google Scholar
Maddever, R.A.M. et al. 1990 Phys. Rev. A 41, 2154.CrossRefGoogle Scholar
Maki, H. & Niu, K. 1987 J. Phys. Soc. Japan 45, 269.CrossRefGoogle Scholar
Marshak, R.E. 1941 Ann. New York Acad. Sci. 41, 49.CrossRefGoogle Scholar
Mayers, R.A., ed. 1986 Encyclopedia of Physical Science and Technology, 1st ed. (Academic Press, New York) Vol. 7, p. 99 (2nd ed. 1992, Vol. 8, p. 433).Google Scholar
McGuire, E. 1978 Phys. Rev. A 20, 445.CrossRefGoogle Scholar
Mochinski, K.A. 1991 private commun. Dubna, April.Google Scholar
Mroz, W. et al. 1994 Rev. Sci. Instr. 65, 1272.CrossRefGoogle Scholar
Nishihara, K. 1968 J. Phys. Soc. Japan 24, 1152.Google Scholar
Nuckolls, J.H. 1982 Phys. Today 35(9), 24.CrossRefGoogle Scholar
Omari, T. et al. 1980 Japan J. Appl. Phys. 19, L 728.Google Scholar
Oraevski, V.N. & Sagedeev, R.Z. 1963 Sov. Phys. Tech. Phys. 7, 955.Google Scholar
Palmer, A.J. 1971 Phys. Fluids 114, 2714.CrossRefGoogle Scholar
Paul, W. 1990 Rev. Mod. Phys. 62, 531.CrossRefGoogle Scholar
Peacock, N.J. & Pease, R.S. 1969 D 2, 1705.Google Scholar
Phipps, C. 1995 Laser Part. Beams 13, 33.CrossRefGoogle Scholar
Phipps, C.R. & Dreyfuss, R.W. 1993 Laser Ionization Mass Analysis, Vertes, A., Gijbels, R., and Adams, F., eds. (Chemical Analysis Series Vol. 124) (John Wiley, New York) p. 369.Google Scholar
Ready, J.F. 1965 J. Appl. Phys. 36, 462.CrossRefGoogle Scholar
Ready, J.F. 1971 Effects of High Power Laser Radiation (Academic Press, New York).Google Scholar
Richardson, R.C. & Alcock, A.J. 1971 Appl. Phys. Lett. 18, 357.CrossRefGoogle Scholar
Rode, A.V. 1983 Dissertation, Moscow Phys. Inst. Academ Sc, USSR.Google Scholar
Rowlands, T. 1990 Plasma Phys. Control. Fusion 32, 279.CrossRefGoogle Scholar
Schwarz, H.J. 1971 Laser Interaction and Related Plasma Phenomena, Schwarz, H. and Hora, H., eds. (Plenum, New York), Vol. 1, p. 207.CrossRefGoogle Scholar
Sharkov, B.Yu. et al. 1992 Rev. Sci. Instr. 63, 2841.CrossRefGoogle Scholar
Sharkov, B.Yu. et al. 1995 Laser Interaction and Related Plasma Phenomena, Miley, G.H. and Nakai, S., eds. (AIP Conf. Proc.) (Am. Inst. Phys., New York).Google Scholar
Shearer, J.W. et al. 1970 Bull. Amer. Phys. Soc. 19, 1483.Google Scholar
Shearer, J.W. & Eddleman, J.L. 1974 Phys. Fluids 16, 1753.CrossRefGoogle Scholar
Sherwood, T.R. 1995 Laser Interaction and Related Plasma Phenomena, Miley, G.H. and Nakai, S., eds. (AIP Conf. Proc.) (Am. Inst. Phys., New York).Google Scholar
Sigel, R. et al. 1976 Phys. Rev. Lett. 36, 1369.CrossRefGoogle Scholar
Siegrist, M. et al. 1976 Opt. Commun. 18, 609.CrossRefGoogle Scholar
Silin, V.P. 1965 Sov. Phys.-JETP 21, 1127.Google Scholar
Skupski, S. et al. 1989 J. Appl. Phys. 62, 2680.Google Scholar
Spatschek, K.H. 1977 Fortschr. Physik 27, 345.Google Scholar
Stamper, J.A. 1991 Laser Part. Beams 9, 841.CrossRefGoogle Scholar
Stenzel, R. 1976 Phys. Fluids 19, 865.CrossRefGoogle Scholar
Velarde, G. et al. 1993 Nuclear Energy by Inertial Confinement (Chem. Rubber Corp., Boca Raton, FL).Google Scholar
Wägli, P. & Donaldson, T.P. 1976 Phys. Rev. Lett. 40, 457.Google Scholar
White, R.B. & Chen, F.F. 1974 Plasma Phys. 16, 565.CrossRefGoogle Scholar
Wong, A. & Stenzel, R. 1975 Phys. Rev. Lett. 34, 727.CrossRefGoogle Scholar
Woryna, E. et al. 1995 Laser Interaction with Matter, Oxford, 1994, Rose, S.J., ed. (Inst. Phys. Conf. Ser. No. 140) (Inst. of Phys., Bristol), p. 463.Google Scholar
Yonger, S.M. 1987 Phys. Rev. A 34, 2841.CrossRefGoogle Scholar
Zeitler, A. et al. 1985 Phys. Fluids 28, 372.CrossRefGoogle Scholar