Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-23T07:51:46.629Z Has data issue: false hasContentIssue false

Self-phase modulation of a laser in self created plasma channel

Published online by Cambridge University Press:  12 March 2009

A. Panwar*
Affiliation:
Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
A.K. Sharma
Affiliation:
Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
*
Address correspondence and reprint requests to: Anuraj Panwar, Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016, India. E-mail: anurajpanwar@rediffmail.com

Abstract

An analytical formalism of self focusing and self-phase modulation of an intense short pulse laser in a plasma due to relativistic and ponderomotive nonlinearities is developed. In the paraxial ray approximation, the pulse retains its Gaussian radial profile, however, its spot size varies with the distance of propagation in a periodic manner. It is influenced by self focusing. The frequency of the laser undergoes red shift. For a tanhyperbolic temporal profile of pulse, the red-shift is maximum at the foot of the pulse and decreases slowly as one goes to higher and higher intensity portions. The effect of ponderomotive nonlinearity is very significant in this respect. The maximum downshift occurs at a distance at which the laser acquires a minimum spot size. With retarded time normalized axial intensity increases more at z ~ Rd and the radial intensity is also more narrowly peaked at z ~ Rd, where Rd = 2π r02/λ is the Rayleigh length, r0 and λ are the spot size and wavelength of the laser pulse respectively.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annou, R., Tripathi, V.K. & Srivastava, M.P. (1996). Plasma channel formation by short pulse laser. Phys. Plasma 3, 13561359.CrossRefGoogle Scholar
Abramyan, L.A., Litvak, A.G., Mironov, V.A. & Sergeev, A.M. (1992). Self-focusing and relativistic waveguiding of an ultrashort laser pulse in a plasma. Sov. Phys. JETP 75, 978.Google Scholar
Borisov, A.B., Borovskiy, A.V., Korobkin, V.V., Prokhovrov, A.M., Rdodes, C.K. & Shiryaev, O.B. (1990). Stabilization of relativistic self focusing of intense subpicosecond ultraviolet pulses in plasma. Phys. Rev. Lett. 65, 17531756.CrossRefGoogle Scholar
Borisov, A.B., Borovskiy, A.V., Shiryaev, O.B., Korobkin, V.V., Prokhorov, A.M., Solem, J.C., Luk, T.S., Boyer, K. & Rhodes, C.K. (1992 a). Relativistic and charge-displacement self channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45, 58305845.CrossRefGoogle ScholarPubMed
Borisov, A.B., Borovskiy, A.V., Korobkin, V.V., Prokhorov, A.M., Shiryaev, O.B., Shi, X.M., Luk, T.S., Mcpherson, A., Solem, J.C., Boyer, K. & Rhodes, C.K. (1992 b). Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasmas. Phys. Rev. Lett. 68, 23092312.CrossRefGoogle ScholarPubMed
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interactions. Laser Part. Beams 25, 161167.CrossRefGoogle Scholar
Chessa, P., Mora, P. & Antonsen, T.M. (1998). Numerical simulation of short laser pulse relativistic self-focusing in underdense plasma. Phys. Plasma 5, 34513458.CrossRefGoogle Scholar
Chen, X.L. & Sudan, R.N. (1993). Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys. Rev. Lett. 70, 20822085.CrossRefGoogle ScholarPubMed
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Gasilov, S.V., Stagira, S., Calegari, F., Nisoli, M., De Silvestri, S., Poletto, L., Villoresi, P. & Andreev, A.A. (2007). X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267275.CrossRefGoogle Scholar
Gill, T.S. & Saini, N.S. (2007). Nonlinear interaction of a rippled laser beam with an electrostatic upper hybrid wave in collisional plasma. Laser Part. Beams 25, 283293.CrossRefGoogle Scholar
Gupta, D.N. & Suk, H. (2007). Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 3136.CrossRefGoogle Scholar
Hafizi, B., Tang, A., Sprangle, P. & Hubbard, R.F. (2000). Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E. 62, 41204125.CrossRefGoogle ScholarPubMed
Konar, S. & Manoj, M. (2005). Effect of higher order nonlinearities on induced focusing and on the conversion of circular Gaussian laser beams into elliptic Gaussian laser beam. J. Opt. A: Pure Appl. Opt. 7, 576.CrossRefGoogle Scholar
Kurki-Suonio, T., Morrison, P.J. & Tajima, T. (1989). Self-focusing of an optical beam in a plasma. Phys. Rev. A 40, 32303239.CrossRefGoogle ScholarPubMed
Liu, C.S. & Jetendra, P. (2006). Modulational instability of a self-guided laser in a magnetized plasma channel. IEEE Trans. Plasma Sci. 34, 2561.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2001). Self focusing and frequency broadening of an intense short-pulse laser in plasma. J. Opt. Soc. Am. A. 18, 17141718.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2000). Laser frequency upshift, self-defocusing, and ring formation in tunnel ionizing gases and plasmas. Phys. Plasma 7, 43604363.CrossRefGoogle Scholar
Max, C.E., Arons, J. & Bruce Langdon, A. (1974). Self modulation and self focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209212.CrossRefGoogle Scholar
Monot, P., Auguste, T., Gibbon, P., Jakober, F., Mainfray, G., Dulieu, A., Louis-Jacquet, , Malka, M.G. & Miquel, J.L. (1995). Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 29532956.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347364.CrossRefGoogle Scholar
Purohit, G., Chauhan, P.K. & Sharma, R.P. (2008). Excitation of an upper hybrid wave by a high power laser beam in plasma. Laser Part. Beams 26, 6167.CrossRefGoogle Scholar
Saini, N.S. & Gill, T.S. (2006). Self-focusing and self-phase modulation of an elliptic Gaussian laser beam in collisionless magnetoplasma. Laser Part. Beams 24, 447453.CrossRefGoogle Scholar
Singh, L., Konar, S. & Sharma, A.K. (2001). Resonant cross modulation of laser beams in a semiconductor slab. J. Phys. D: Appl. Phys. 34, 2237.CrossRefGoogle Scholar
Sun, G.Z., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing short of intense pulses in plasmas. Phys. Fluids 30, 526532.CrossRefGoogle Scholar
Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J. & Ryc, L. (2008). Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams 26, 379387.CrossRefGoogle Scholar
Tsintsadze, N.L., Tskhakaya, D.D. & Stenflo, L. (1979). Modulational instabilities due to relativistic electron mass variations. Phys. Lett. A 72, 115116.CrossRefGoogle Scholar
Tzeng, K.C. & Mori, W.B. (1998). Suppression of electron ponderomotive blowout and relativistic self-focusing by the occurrence of Raman scattering and plasma heating. Phys. Rev. Lett. 81, 104107.CrossRefGoogle Scholar
Watts, I., Zepf, M., Clark, L., Tatarakis, M., Krushelnik, K., Dangor, A.E., Alott, R., Clarke, J., Neely, D. & Norreys, P.N. (2002). Measurement of relativistic self-phase modulation in plasma. Phys. Rev. E, Stat. Phys. Plasma Fluids Relat. Interdiscip. Top. 66, 036409-1/036409-6.Google ScholarPubMed
Willi, O., Toncian, T., Borghesi, M., Fuchs, J., D'Humieres, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C., Pipahl, A. & Romagnani, L. (2007). Laser triggered micro-lens for focusing and energy selection of MeV protons. Laser Part. Beams 25, 7177.CrossRefGoogle Scholar
Yablonovitch, E. (1974 a). Self-phase modulation of light in a laser-breakdown plasma. Phys. Rev. Lett. 32, 11011104.CrossRefGoogle Scholar
Yablonovitch, E. (1974 b). Self-phase modulation and short-pulse generation from laser-breakdown plasmas. Phys. Rev. A 10, 18881895.CrossRefGoogle Scholar