Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-08T13:21:22.047Z Has data issue: false hasContentIssue false

A simple kinetic model for electron-beam-pumped KrF lasers

Published online by Cambridge University Press:  09 March 2009

E. C. Harvey
Affiliation:
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon 0X11 OQXUnited Kingdom
M. J. Shaw
Affiliation:
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon 0X11 OQXUnited Kingdom

Abstract

A kinetic model for KrF is presented that, by neglecting all but the most important kinetic processes, adequately describes the performance of electron-beam-pumped KrF lasers by a few, simple analytical expressions. The expression for the saturation intensity as a function of pump rate and gas composition is checked by measurements of gain saturation in both argon-rich and krypton-rich laser mixtures. The effects of fluorine burn-up are considered and are shown to impose a fundamental relationship between output fluence and efficiency of KrF laser amplifiers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barr, J. R. M. et al. 1988 Opt. Commun. 66, 127.CrossRefGoogle Scholar
Chen, H. L. et al. 1977 Appl. Phys. Lett. 30, 99.CrossRefGoogle Scholar
Czuchlewski, S. J. et al. 1987 Fusion Technol. 11, 560.CrossRefGoogle Scholar
Dunning, T. H. & Hay, P. J. 1976 Appl. Phys. Lett. 28, 649.CrossRefGoogle Scholar
Edwards, C. B. & O'Neill, F. 1983 Laser Part. Beams 1, 81.CrossRefGoogle Scholar
Fujiwara, E. et al. 1983 In Excimer Lasers, AIP Conference Proceedings No.100,Rhodes, C.K., Egger, H. & Pummer, H., eds. (American Institute of Physics, New York), p. 19.Google Scholar
Galvert, J. G. & Pitts, J. N. 1966 Photochemistry (Wiley, New York).Google Scholar
Hay, P. J. & Dunning, T. H. 1977 J. Chem. Phys. 66, 1306.CrossRefGoogle Scholar
Hunter, A. M. & Hunter, R. O. 1981 IEEE J. Quantum Electron. QE-17, 1879.CrossRefGoogle Scholar
Kannari, F., Obara, M. & Fujioka, T. 1985 J. Appl. Phys. 57, 4309.CrossRefGoogle Scholar
Kannari, F., Shaw, M. J. & O'Neill, F. 1987 J. Appl. Phys. 61, 476.CrossRefGoogle Scholar
Kimura, W. D. & Salesky, E. T. 1985 In Proceedings of the International Conference on Lasers '85(Society for Optical & Quantum Electronics,Las Vegas), p. 417.Google Scholar
Klimek, D. E. et al. 1981 IEEE J. Quantum Electron. QE-17, 1847.CrossRefGoogle Scholar
Lorents, D. C. 1976 Physica C 82, 19.CrossRefGoogle Scholar
Mangano, J. A. et al. 1977 Appl. Phys. Lett. 31, 26.CrossRefGoogle Scholar
Nishioka, H. et al. 1988 In Short-Wavelength Lasers and Their Applications, Yamanaka, C., ed. (Springer-Verlag), p. 208.CrossRefGoogle Scholar
Rice, J. K., Tisone, G. C. & Patterson, E. L. 1980 IEEE J. Quantum Electron. QE-16, 1315.CrossRefGoogle Scholar
Rokni, M., Jacob, J. H. & Mangano, J. A. 1977 Phys. Rev. A 16, 2216.CrossRefGoogle Scholar
Rosocha, L. A. et al. 1987 Fusion Technol. 11, 497.CrossRefGoogle Scholar
Shaw, M. J. 1983 Appl. Phys. B 30, 5.CrossRefGoogle Scholar
Suda, A., Kumagai, H. & Obara, M. 1987 Appl. Phys. Lett. 51, 218.CrossRefGoogle Scholar
Trainor, D. W. & Jacob, J. H. 1980 Appl. Phys. Lett. 37, 675.CrossRefGoogle Scholar