Skip to main content Accessibility help
×
×
Home

Simulations of full impact of the Large Hadron Collider beam with a solid graphite target

  • N.A. Tahir (a1), R. Schmidt (a2), M. Brugger (a2), A. Shutov (a3), I.V. Lomonosov (a3), A.R. Piriz (a4) and D.H.H. Hoffmann (a5)...
Abstract

The Large Hadron Collider (LHC) will operate with 7 TeV/c protons with a luminosity of 1034 cm−2 s−1. This requires two beams, each with 2808 bunches. The nominal intensity per bunch is 1.15 × 1011 protons and the total energy stored in each beam is 362 MJ. In previous papers, the mechanisms causing equipment damage in case of a failure of the machine protection system was discussed, assuming that the entire beam is deflected onto a copper target. Another failure scenario is the deflection of beam, or part of it, into carbon material. Carbon collimators and beam absorbers are installed in many locations around the LHC close to the beam, since carbon is the material that is most suitable to absorb the beam energy without being damaged. In case of a failure, it is very likely that such absorbers are hit first, for example, when the beam is accidentally deflected. Some type of failures needs to be anticipated, such as accidental firing of injection and extraction kicker magnets leading to a wrong deflection of a few bunches. Protection of LHC equipment relies on the capture of wrongly deflected bunches with beam absorbers that are positioned close to the beam. For maximum robustness, the absorbers jaws are made out of carbon materials. It has been demonstrated experimentally and theoretically that carbon survives the impact of a few bunches expected for such failures. However, beam absorbers are not designed for major failures in the protection system, such as the beam dump kicker deflecting the entire beam by a wrong angle. Since beam absorbers are closest to the beam, it is likely that they are hit first in any case of accidental beam loss. In the present paper we present numerical simulations using carbon as target material in order to estimate the damage caused to carbon absorbers in case of major beam impact.

Copyright
Corresponding author
Address correspondence and reprint requests to: N.A. Tahir, Gesellschaft für Schwerionenforschung Darmstadt, Planckstrasse 1, 64291 Darmstadt, Germany. E-mail: n.tahir@gsi.de
References
Hide All
Bangerter, R.O., MARK, J.W.-K. & Thiessen, A.R. (1982). Heavy ion inertial fusion–initial survey of target gain versus ion beam parameters. Phys. Lett. A 88, 225227.
Deutsch, C. (1986). Inertial confinement fusion driven by intense ion beams. Ann. Phys. (Paris) 11, 1111.
Fasso, A., Ferrari, A., Roesler, S., Sala, P.R., Battistoni, G., Cerutti, F., Gadioli, E., Garzelli, M.V., Ballarini, F., Ottolenghi, A., Empl, A. & Ranft, J. (2003). The physics models of FLUKA: Status and recent developments. Conf. Computing in High Energy and Nuclear Physics (CHEP2003). March 24–28, La Jolla, California.
Fasso, A., Ferrari, A., Ranft, J. & Sala, P.R. (2005). FLUKA: A multi-particle transport code. CERN-2005-10, INFN/TC-05/11, SLAC-R-773.
Fortov, V.E., Goel, B., Munz, C.-D., Ni, A.L., Shutov, A. & Vorbiev, O.YU. (1996). Numerical simulations of non-stationary fronts and interfaces by the Godunov method in m oving grids. Nucl. Sci. Eng. 123, 169189.
Henning, W.F. (2004). The future GSI facility. Nucl. Instrum. Meth. Phys. Res. B 214, 211215.
Kerley, G.I. (2001). Multi-component multiphase equation-of-state for carbon. Sandia Nat. Lab. Rep. SAND2001-2619, 147.
Logan, B.G., Perkins, L.J. & Barnard, J.J. (2008). Direct drive heavy ion beam inertial fusion at high coupling efficiency. Phys. Plasmas 15, 072701.
Long, K.A. & Tahir, N.A. (1982). Heavy ion beam ICF fusion: The thermodynamics of ignition and the achievement of high gain in ICF fusion targets. Phys. Lett. A 91, 451456.
Long, K.A. & Tahir, N.A. (1986). Theory and calculation of the energy–loss of charged particles in inertial confinement fusion burning plasmas. Nucl. Fusion 26, 555592.
Long, K.A. & Tahir, N.A. (1987). Range shortening, radiation transport and Rayleigh–Taylor instability phenomena in ion bean driven inertial fusion reactor–size targets–implosion, ignition and burn phases. Phys. Rev. A 35, 26312659.
Lopez Cela, J.J., Piriz, A.R., Serna Moreno, M. & Tahir, N.A. (2006). Numerical simulations of Rayleigh–Taylor instability in elastic solids. Laser Part. Beams 24, 427435.
Ni, P., Kulish, M.I., Mintsev, V., Nikolaev, D.N., Ternovoi, V.Y., Hoffmann, D.H.H., Udrea, S., Hug, A., Tahir, N.A. & Varentsov, D. (2008). Temperature measurement of warm dense matter generated by intense heavy ion beams. Laser Part. Beams 26, 583589.
Piriz, A.R., Portuguez, R.F., Tahir, N.A. & Hoffmann, D.H.H. (2002). Implosion of multilayered cylindrical targets driven by intense heavy ion beams. Phys. Rev. E 66, 056403.
Piriz, A.R., Tahir, N.A., Hoffmann, D.H.H. & Temporal, M. (2003 a). Generation of a hollow ion beam: calculation of the rotation frequency required to accommodate symmetry constraint. Phys. Rev. E 67, 017501.
Piriz, A.R., Temporal, M., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2003 b). Symmetry analysis of cylindrical implosions driven by high-frequency rotating ion beams. Plasma Phys. Contr. Fusion 45, 1733.
Piriz, A.R., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2005). Rayleigh-Taylor instability in elastic solids. Phys. Rev. E 72, 056313.
Piriz, A.R., Lopez Cela, J.J., Serna Moreno, M., Tahir, N.A. & Hoffmann, D.H.H. (2006). Thin plate effects in the Rayleigh-Taylor instability of elastic solids. Laser Part. Beams 24, 275282.
Piriz, A.R., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2008). Richtmeyer–Meshkov instability in elastic–plastic solids. Phys. Rev. E 78, 056401.
Piriz, A.R. & Wouchuk, G. (1992). Energy gain of spherical shell targets in inertial confinement fusion. Nucl. Fusion 32, 933940.
Schmidt, R., Assmann, R., Carlier, E., Dehning, B., Denz, R., Goddard, B., Holzer, E.B., Kain, V., Puccio, B., Todd, B., Uythoven, J., Wenninger, J. & Zerlauth, M. (2006). Protection of the CERN Large Hadron Collider. New J. Phys. 8, 290.
Tahir, N.A., Hoffmann, D.H.H., Spiller, P., Maruhn, J.A. & Bock, R. (1999). Heavy-ion-induced hydrodynamic effects in solid targets. Phys. Rev. E 60, 47154724.
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauscwitz, A., Spiller, P. & Bock, R. (2000 a). Shock compression of condensed matter using intense beams of energetic heavy ions. Phys. Rev. E 61, 19751980.
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000 b). Equation-of-state properties of high-energy-density matter using intense heavy ion beams with an annular focal spot. Phys. Rev. E 62, 12241233.
Tahir, N.A., Kozyreva, A., Spiller, P., Hoffmann, D.H.H. & Shutov, A. (2001 a). Necessity of bunch compression for heavy-ion-induced hydrodynamics and studies of beam fragmentation in solid targets at a proposed synchrotron facility. Phys. Rev. E 63, 036407.
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Tauschwitz, A., Shutov, A., Maruhn, J.A., Spiller, P., Neuner, U., Jacoby, J., Roth, M., Bock, R., Juranek, H. & Redmer, R. (2001 b). Metallization of hydrogen using heavy-ion-beam implosion of multi-layered targets. Phys. Rev. E 63, 016402.
Tahir, N.A., Juranek, H., Shutov, A., Redmer, R., Piriz, A.R., Temporal, M., Varentsov, D., Udrea, S., Hoffmann, D.H.H., Deutsch, C., Lomonosov, I. & Fortov, V.E. (2003). Influence of the equation of state on the compression and heating of hydrogen. Phys. Rev. B 67, 184101.
Tahir, N.A., Juranek, H., Shutov, A., Redmer, R., Piriz, A.R., Temporal, M., Varentsov, D., Udrea, S., Hoffmann, D.H.H., Deutsch, C., Lomonosov, I. & Fortov, V.E. (2004). Target heating in high-energy-density matter experiments at the proposed GSI FAIRfacility: non–linear bunch rotation in SIS100 and optimization of spot size and pulse length. Laser Part. Beams 22, 485493.
Tahir, N.A., Weick, H., Iwase, H., Geissel, H., Hoffmann, D.H.H., Kindler, B., Lommel, B., Radon, T., Münzenberg, G. & Sümerrer, K. (2005 a). Calculations of high-power production target and beamdump for the GSI future Super-FRS for a fast extraction scheme at the FAIR facility. J. Phys. D: Appl. Phys. 38, 18281837.
Tahir, N.A., Adonin, A., Deutsch, C., Fortov, V.E., Grandjouan, N., Geil, B., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 b). Studies of heavy ion-induced high-energy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility. Nucl. Instrum. Methods Phys. Res. A 544, 1626.
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 c). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.
Tahir, N.A., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 d). The CERN Large Hadron Collider as a tool to study high-energy-density matter. Phys. Rev. Lett. 94, 135004.
Tahir, N.A., Goddard, B., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 e). Impact of 7-Tev/c Large Hadron Collider proton beam on a copper target. J. Appl. Phys. 97, 083532.
Tahir, N.A., Spiller, P., Udrea, S., Cortazar, O.D., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Lomonosov, I.V., Ni, P., Piriz, A.R., Shutov, A., Temporal, M. & Vrentsov, D. (2006). Studies of equation-of-state properties of high-energy density matter using intense heavy ion beams at the future FAIR facility: The HEDgeHOB Collaboration. Nucl. Instrum. Meth. Phys. Res. B 245, 8593.
Tahir, N.A., Schmidt, R., Brugger, M., Lomonosov, I.V., Shutov, A., Piriz, A.R., Udrea, S., Hoffmann, D.H.H. & Deutsch, C. (2007 a). Prospects of high–energy–density physics research using the CERN Super Proton Synchrotron (SPS). Laser Part. Beams 25, 639647.
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Wouchuk, G., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 b). HEDgeHOB: High–energy–density matter generated by heavy ion beams at the future Facility for Antiprotons and Ion Research. Nucl. Instrum. Meth. Phys. Res. A 577, 238249.
Tahir, N.A., Shutov, A., Kim, V., Matveichev, A., Ostrik, A.V., Lomonosov, I.V., Piriz, A.R. & Hoffmann, D.H.H. (2008 a). Simulatiuon of a solid graphite target for high intensity fast extracted uranium beams for the Super–FRS. Laser Part. Beams 26, 411423.
Tahir, N.A., Kim, V., Matveichev, A., Ostrik, A.V., Shutov, A., Lomonosov, I.V., Piriz, A.R., Lopez Cela, J.J. & Hoffmann, D.H.H. (2008 b). High energy density and beam induced stress related issues in solid graphite Super–FRS fast extraction targets. Laser Part. Beams 26, 273286.
Tahir, N.A., Matveichev, A., Kim, V., Ostrik, A.V., Shutov, A., Lomonosov, I.V., Sultonov, V., Piriz, A.R., Lopez Cela, J.J. & Hoffmann, D.H.H. (2009 a). Three–dimensional simulations of a solid graphite target for high intensity fast extracted uranium beams for the Super–FRS. Laser Part. Beams 27, 917.
Tahir, N.A., Schmidt, R., Shutov, A., Lomonosov, Piriz, A.R., Hoffmann, D.H.H., Deutsch, C. & Fortov, V.E. (2009 b). Large Hadron Collider at CERN: beams generating high–energy–density matter. Phys. Rev. E 79 046410.
Tahir, N.A. & Long, K.A. (1982). Fusion power from heavy ion imploded targets. Phys. Lett. A 90, 242247.
Tahir, N.A. & Long, K.A. (1983). Numerical simulations and theoretical analysis of implosion, ignition and burn of heavy ion beam reactor–size ICF targets. Nucl. Fusion 23, 887916.
Tahir, N.A. & Long, K.A. (1984). Numerical modeling of radiation Marshak waves. Laser Part. Beams 21, 371381.
Temporal, M., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2003). Numerical analysis of a multilayered cylindrical target compression driven by a rotating intense heavy ion beam. Laser Part. Beams 21, 609614.
Temporal, M., Lopez Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137142.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed