Skip to main content Accessibility help
×
×
Home

A study on fabrication, manipulation and survival of cryogenic targets required for the experiments at the Facility for Antiproton and Ion Research: FAIR

  • E.R. Koresheva (a1), I.V. Aleksandrova (a1), E.L. Koshelev (a1), A.I. Nikitenko (a1), T.P. Timasheva (a1), S.M. Tolokonnikov (a1), A.A. Belolipetskiy (a2), V.G. Kapralov (a3), V. Yu. Sergeev (a3), A. Blazevic (a4), K. Weyrich (a4), D. Varentsov (a4), N.A. Tahir (a4), S. Udrea (a5) and D.H.H. Hoffmann (a5)...

Abstract

Cylindrical cryogenic targets are required to carry out the Laboratory Planetary Science scheme of the experiments of the High Energy Density matter Generated by Heavy Ion Beams collaboration at FAIR. In this paper, for the first time a thorough analysis of the problem of such targets' fabrication, delivery and positioning in the center of the experimental chamber has been made. Particular attention is paid to the issue of a specialized cryogenic system creation intended for rep-rate supply of the High Energy Density matter Generated by Heavy Ion Beams experiments with the cylindrical cryogenic targets.

Copyright

Corresponding author

Address correspondence and reprint requests to: E.R. Koresheva, P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia. E-mail: koresh@sci.lebedev.ru

References

Hide All
Aleksandrova, I.V., Koresheva, E.R. & Osipov, I.E. (1999). Free - standing targets for applications to ICF. Laser Part. Beams 17, 713727.
Aleksandrova, I.V., Bazdenkov, S.V., Chtcherbakov, V.I., Koresheva, E.R., Koshelev, E.L., Osipov, I.E. & Yaguzinskii, L.V. (2004). An Efficient method of fuel ice formation in moving free standing ICF/IFE targets. J. Appl. Phys. D 37 11631179.
Aleksandrova, I.V., Belolipeckiy, A.A., Blazevic, A., Hoffmann, D.H.H., Kapralov, V.G., Koresheva, E.R., Nikitenko, A.I., Sergeev, V.Yu., Tahir, N.A., Timasheva, T.P., Tolokonnikov, S.M., Udrea, S., Varentsov, D. & Weyrich, A.K. (2008). Cryogenic cylindrical targets for experiments on the low-entropy compression of the fuel matter generated by the interaction of intense heavy ion beams. In Book of Abstracts. XXXV International Conference on Plasma Physics and Confinement Fusion.Zvenigorod, Russia.
Alekseeva, L.A., Strjemechnyi, M.A. & Chtcherbakov, G.N. (1995). Vlijanie primesi neona na nizkotemperaturnuju plastichnost n-H2 (Influence of neon additive on low-temperature plasticity of H2). Fizika Nizkih Temp. 21, 983985.
Alekseeva, L.A., Strjemechnyi, M.A. & Butenko, Yu.V. (1997). Low-temperature plasticity of dilute solid solutions of Ne in n-H2. Fizika Nizkih Temp. 23, 448457.
Alekseeva, L.A., Syrkin, E.S. & Vashenko, L.A. (2003). Low-temperature plasticity and dynamics of a lattice of solid para-hydrogen with isotopic impurity. Fizika Tverdogo Tela 45, 10241028.
Beliaev, N.M. & Riadno, A.A. (1993). Mathematical Methods of Heat Conduction. Kiev: Naukova Dumka.
Born, M. & Wolf, E. (1999). Principles of Optics. Cambridge: Cambridge University Press.
Bushman, A.V. & Fortov, V.E. (1983). Models of equation of the matter state. Uspekhi Fizicheskikh Nauk 140, 177232.
Chaurasia, S., Munda, D.S., Ayyub, P., Kulkarni, N., Gupta, N.K. & Dhareshwar, L.J. (2008). Laser plasma interaction in copper nano-particle targets. Laser Part. Beams 26, 473478.
Combs, S.K. (1993). Pellet injection technology. Rev. Sci. Instrum. 67, 16791698.
Combs, S.K. & Foust, C.R. (1997). New extruder-based deuterium feed system for centrifuge pellet injection. Rev. Sci. Instrum. 68, 44484457.
Combs, S.K., Baylor, L.R., Fisher, P.W., Foust, C.R., Gouge, M.J., Pavarin, D., Sakamoto, R., Twynam, P., Watson, M. & Yamada, H. (2001). ORNL mock-up tests of inside launch pellet injection on JET and LHD. Fusion Eng. Des. 58–59, 343347.
Combs, S.K., Baylor, L.R., Caughman, J.B.O., Foust, C.R., Jernigan, T.C., Maruyama, S., McGill, J.M., Rasmussen, D.A., Ridenaur, J.A. & Watson, M. (2004). Pellet delivery and survivability through curved guide tubes for fusion fueling and its implications for ITER. Report, contract DE-AC05-00OR22725. Oak Ridge, TN: Oak Ridge National Laboratory.
Cook, R.C., Kozioziemski, B.J., Nikroo, A., Wilkens, H.L., Bhandarkar, S., Forsman, A.C., Haan, S.W., Hoppe, M.L., Huang, H., Mapoles, E., Moody, J.D., Sater, J.D., Seugling, R.M., Stephens, R.B., Takagi, M. & Xu, H.W. (2008). National Ignition Facility target design and fabrication. Laser Part. Beams 26, 479487.
Di Bernardo, A., Courtois, C., Cros, B., Matthieussent, G., Batani, D., Desai, T., Strati, F. & Lucchini, G. (2003). High-intensity ultrashort laser-induced ablation of stainless steel foil targets in the presence of ambient gas. Laser Part. Beams 21, 5964.
Eliezer, S., Murakaml, M. & Val, J.M.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.
Friedman, W.D., Halpern, G.M. & Brinker, B.A. (1974). Target fabrication and positioning techniques for laser fusion experiments. Rev. Sci. Instrum. 45, 12451252.
Fortov, V.E., Hoffmann, D.H.H. & Sharkov, B.Y. (2008). Intense ion beams for generating extreme states of matter. Phys.-Uspekhi. 51, 109131.
Funk, U.N., Bock, R., Dornik, M., Geissel, M., Stetter, M., Stowe, S., Tahir, N. & Hoffmann, D.H.H. (1998). High energy density in solid rare gas targets and solid hydrogen. Nucl. Instr. & Meth. Phys. Res. A 415, 6874.
Grilly, E.R., Hammel, J.E., Rodriguez, D.J., Scudder, D.W. & Shlachter, J.S. (1985). Production of solid D2 threads for dense Z-pinch plasmas. Rev. Sci. Instrum. 56, 18851887.
Hoffmann, D.H.H., Blazevic, A., Korostiy, S., Ni, P., Pikuzc, S.A., Rethfeld, B., Rosmej, O., Roth, M., Tahir, N.A., Udrea, S., Varentsov, D., Weyrich, K., Sharkov, B.Y. & Maron, Y. (2007). Inertial fusion energy issues of intense heavy ion and laser beams interacting with ionized matter studied at GSI-Darmstadt. Nucl. Instr. & Meth. Phys. Res. A 577, 813.
Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., Mintsev, V., Tahir, N.A., Varentsov, D. & Wieser, J. (2002). Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9, 36513654.
Hoffmann, D.H.H., Jacoby, J., Laux, W., Demagistris, M., Boggasch, E., Spiller, P., Stockl, C., Tauschwitz, A., Weyrich, K., Chabot, M. & Gardes, D. (1994). Energy-loss of fast heavy-ions in plasmas. Nucl. Instr. & Meth. Phys. Res. B 90, 19.
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy-loss of heavy-ions in a plasma target. Phys. Rev. A 42, 23132321.
Koresheva, E.R., Osipov, I.E. & Aleksandrova, I.V. (2005). Free standing target technologies for inertial fusion energy: Target fabrication, characterization, and delivery. Laser Part. Beams 23, 563571.
Koresheva, E.R., Merkuliev, Yu.A., Nikitenko, A.I., Osipov, I.E. & Tolokonnikov, S.M. (1988). The peculiarities of laser cryogenic targets destruction and their injection into a powerful laser focus. Laser Part. Beams 6, 245253.
Koresheva, E.R., Aleksandrova, I.V., Osipov, I.E., Bazdenkov, S.V., Chtcherbakov, V.I., Koshelev, E.L., Nikitenko, A.I., Tolokonnikov, S.M., Yaguzinskiy, L.S., Baranov, G.D., Safronov, A.I., Timofeev, I.D., Kuteev, B.V. & Kapralov, V.G. (2003). Progress in the Extension of Free-Standing Target Technologies on IFE Requirements. Fusion Sci. Technol. 35, 290300.
Koresheva, E.R., Osipov, I.E., Tolokonnikov, S.M., Petrovskiy, V.V., Rezgol, I.A. & Baranov, G.D. (2004). Protective sabot for cryogenic target delivery to the laser focus. Voprosy Atomnoi Nauki I Techniki, ser. Thermonuclear Fusion, 2, 1124.
Krause, H. (1973). Apparatus for producing sticks of solid deuterium. J. Phys. E 6, 11321134.
Krupskiy, I.N., Leontieva, A.V., Indan, L.N. & Evdokimova, O.V. (1976). Peculiarity of low-temperature plasticity of solid hydrogen. Pis'ma v JETF 24, 297300.
Krupskiy, I.N., Leontieva, A.V., Indan, L.N. & Evdokimova, O.V. (1977). A solid body plastic deformation. Fizika Nizkih Temperatur 3, 933940.
Kuteev, B.V., Viniar, I.V., Sergeev, V.Yu., Tsendin, L.D. & Kapralov, V.G. (1994). Development of an ITER pellet fueling system in Russia. Fusion Technol. 26, 642652.
Lichtenecker, K. (1926). Dielectric constant of natural and synthetic mixtures. Phys.Zeitschrift 27, 115158.
Lomonosov, I.V. (2007). Multi-phase equation of state for aluminum. Laser Part. Beams vol. 25, 567584.
Malkov, M.P., Danilov, I.B., Zeldovich, A.G. & Fradkov, A.B. (1973). Handbook on the physics-chemical bases of cryogenics. Moscow: Energia, 392 p.
Meyertervehn, J., Witkowski, S., Bock, R., Hoffmann, D.H.H., Hofmann, I., Muller, R.W., Arnold, R. & Mulser, P. (1990). Accelerator and target studies for heavy-ion fusion at the Gesellschaft-fur-Schwerionenforschung. Phys. Fluids B 2, 13131317.
Neuner, U., Bock, R., Roth, M., Spiller, P., Constantin, C., Funk, U.N., Geissel, M., Hakuli, S., Hoffmann, D.H.H., Jacoby, J., Kozyreva, A., Tahir, N.A., Udrea, S., Varentsov, D. & Tauschwitz, A. (2000). Shaping of intense ion beams into hollow cylindrical form. Phys. Rev. Lett. 85, 45184521.
Pechacek, R.E., Greig, J.R., Raleigh, M., DeSilva, A.W. & Koopman, D.W. (1981). Plasma production by staged laser irradiation of mm-size deuterium pellets. Rev.Sci.Instrum. 52, 371376.
Piriz, A.R., Tahir, N.A., Cela, J.J.L., Cortazar, O.D., Moreno, M.C.S., Temporal, M. & Hoffmann, D.H.H. (2007). Analytical models for the design of the LAPLAS experiment. Contrib. Plasma Phy. 47, 213222.
Prut, V.V. & Shibaev, S.A. (1990). Injector of hydrogen pellet. Preprint IAE 5258/7, Moscow: Russian Research Center “Kurchatov Institute”, 20 p.
Sakamoto, H., Yamada, H., Takeiri, Y., Narihara, K., Tokuzawa, T., Suzuki, H., Masuzaki, S., Sakakibara, S., Morita, S., Goto, M., Peterson, B.J., Matsuoka, K., Ohyabu, N., Komori, A., Motojima, O. & the LHD experimental group. (2006). Repetitive pellet fuelling for high-density/steady-state operation on LHD. Nucl. Fusion 46, 884889.
Sethian, J.D., Gerber, K.A. & Sy, M.O. (1987). Solid deuterium fiber extruder. Rev. Sci. Instrum. 58, 536538.
Siegel, R. & Howell, J.B. (1972). Thermal Radiation Heat Transfer. New York: McGrow Hill.
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Tauschwitz, A., Shutov, A., Maruhn, J.A., Spiller, P., Neuner, U., Jacoby, J., Roth, M., Bock, R., Juranek, H. & Redmer, R. (2000). Metallization of hydrogen using heavy-ion-beam implosion of multilayered cylindrical targets. Phys.Rev. E 63, 016402/1-9.
Tahir, N.A., Udrea, S., Deutsch, C., Fortov, V.E., Grandjouan, G., Gryaznov, V., Hoffmann, D.H.H., Hulsmann, P., Kirk, M., Lomonosov, I.V., Piriz, A.R., Shutov, A., Spiller, P., Temporal, M. & Varentsov, D. (2004). Target heating in high-energy-density matter experiments at the proposed GSI FAIR facility: Non-linear bunch rotation in SIS 100 and optimization of spot size and pulse length. Laser Part. Beams 22, 485493.
Tahir, N.A., Adonin, A., Deutsch, C., Fortov, V.E., Grandjouan, N., Geil, B., Grayaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005). Studies of heavy ion-induced high-energy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility. Nucl. Instrum. Meth. Phys. Res. A 544,1626.
Tahir, N.A., Lomonosov, I.V., Shutov, A., Udrea, S., Deutsch, C., Fortov, E., Gryaznov, V., Hoffmann, D.H.H., Jacobi, J., Kain, V., Kuster, M., Ni, P., Piriz, A.R., Schmidt, R., Spiller, P., Varentsov, D. & Zioutas, K. (2006 a). Proposed studies of strongly coupled plasmas at the future FAIR and LHC facilities: The HEDgeHOB collaboration. J. Phys. A 39, 47554763.
Tahir, N.A., Spiller, P., Udrea, S., Cortazar, O.D., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Lomonosov, I.V., Ni, P., Piriz, A.R., Shutov, A., Temporal, M. & Varentsov, D. (2006 b). Studies of equation of state properties of high-energy density matter using intense heavy ion beams at the future FAIR facility: The HEDgeHOB collaboration. Nucl. Instrum. Meth. Phys. Res. B 245, 8593.
Tahir, N.A., Shutov, A., Lomonosov, I.V., Piriz, A.R., Wouchuck, G., Deutch, C., Hoffmann, D.H.H. & Fortov, V.E. (2006 c). Numerical simulations and theoretical analysis of High Energy Density experiments at the next generation of ion beam facilities at Darmstadt: The HEDgeHOB collaboration. High Ener. Density Phys. 2, 2134.
Tahir, N.A., Shutov, A., Lomonosov, I.V., Gryaznov, V., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H., Ni, P., Piriz, A.R., Udrea, S., Varentsov, D. & Wouchuk, G. (2006 d). Studies of thermophysical properties of high-energy-density states in matter using intense heavy ion beams at the future FAIR accelerator facilities: The HEDgeHOB collaboration. J. De Phys. IV 133, 10591064.
Tahir, N.A., Piriz, A.R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Wouchuk, G., Deutsch, C., Spiller, P., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 a). Survey of theoretical work for the proposed HEDgeHOB experimental schemes: HIHEX and LAPLAS. Contrib. Plasma Phys. 47, 223233.
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Wouchuk, G., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 b). HEDgeHOB: High-energy density matter generated by heavy ion beams at the future facility for antiprotons and ion research. Nucl. Instrum. Meth. Phys. Res. A 577, 238249.
Tahir, N.A., Weick, H., Shutov, A., Kim, V., Matveichev, A., Ostrik, A., Sultanov, V., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2008 a). Simulations of a solid graphite target for high intensity fast extracted uranium beams for the Super-FRS. Laser Part. Beams 26, 411423.
Tahir, N.A., Kim, V.V., Matvechev, A.V., Ostrik, A.V., Shutov, A.V., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2008 b). High energy density and beam induced stress related issues in solid graphite Super-FRS fast extraction targets. Laser Part. Beams 26, 273286.
Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137142.
Varentsov, D., Ternovoi, V.Y., Kulish, M., Fernengel, D., Fertman, A., Hug, A., Menzel, J., Ni, P., Nikolaev, D.N., Shilkin, N., Turtikov, V., Udrea, S., Fortov, V.E., Golubev, A.A., Gryaznov, V.K., Hoffmann, D.H.H., Kim, V., Lomonosov, L., Mintsev, V., Sharkov, B.Y., Shutov, A., Spiller, P., Tahir, N.A. & Wahl, H. (2007). High-energy-density physics experiments with intense heavy ion beams. Nucl. Instrum. Meth. Phys. Res. A 577, 262266.
Viniar, I.V., Skoblikov, S.V. & Koblenz, P.Yu. (1997). Injector of hydrogen microparticles with screw extruder. Pis'ma v J. Tehnicheskoi Fiziki 23, 4346.
Viniar, I.V. (1999). Periodic injector s poristym formirovatelem dlja vvoda topliva v plazmu. J. Tehnicheskoi Fiziki 69, 3539.
Viniar, I.V. & Lukin, A.Y. (2000). Screw extruder of solid hydrogen. J. Tehnicheskoi Fiziki 70, 107112.
Viniar, I.V., Geraud, A., Yamada, H., Sakamoto, R., Oda, Y., Lukin, A., Umov, A., Skoblikov, S., Gros, G., Saksaganskiy, G., Reznichenko, P., Krasilnikov, I. & Panchenko, V. (2004). Pellet injectors developed at the Pelin laboratory for steady-state plasma fuelling. Plasma Sci. Technol. 6, 22862290.
Yang, H., Nagai, K., Nakai, N. & Norimatsu, T. (2008). Thin shell aerogel fabrication for FIREX-I targets using high viscosity (phloroglucinol carboxylic acid)/formaldehyde solution. Laser Part. Beams 26, 449453.
Zvorykin, V.D., Berthe, L., Boustie, M., Levchenko, A.O. & Ustinovskii, N.N. (2008). Planar shock waves in liquids produced by high-energy KrF laser: A technique for studying hydrodynamic instabilities. Laser Part. Beams 26, 461471.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed