Skip to main content
×
Home

Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets

  • L. Holmlid (a1), H. Hora (a2), G. Miley (a3) and X. Yang (a3)
Abstract
Abstract

Clusters of condensed deuterium of densities up to 1029 cm−3 in pores in solid oxide crystals were confirmed from time-of-flight mass spectrometry measurements. Based on these facts, a schematic outline and possible conclusions of expectable generalizations are presented, which may lead to a simplification of laser driven fusion energy including new techniques for preparation of targets for application in experiments of the NIF type, but also for modified fast igniter experiments using proton or electron beams or side-on ignition of low compressed solid fusion fuel.

Copyright
Corresponding author
Address correspondence and reprint requests to: Heinrich Hora, Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia. E-mail: h.hora@unsw.edu.au
References
Hide All
Amendt P.A., Robey , Harry F., Park H.-S, Tipton R.E., Turner R.E., Milovich J.L., Bono N., Hibbard H.L., Wallace R. & Glebov V.Y. (2005). Hohlraum-driven ignition-like double-shell implosions on the omega laser facility. Phys. Rev. Lett. 94, 065004/1-4.
Azizi N., Malekynia B., Hora H., Ghoranneviss M., Miley G.H. & He X. (2009). Updated threshold for laser driven block ignition of neutron lean fusion energy. Laser Part. Beams 27, 201206.
Badiei S. & Holmlid L. (2006). Experimental studies of fast fragments of H Rydberg matter. J. Phys. B 39, 41914212.
Badiei S., Andersson L. & Holmlid L. (2009). High-energy Coulomb explosion in ultra-high dense deuterium: Time-of-flight mass spectrometry with variable energy and flight length. International J. Mass Spectr. 282, 7076.
Boreham B.W., Newman D.S., Höpfl D.S. & Hora H. (1995). Depressed photoemission from Görlich cathodes at high laser light intensities. J. Appl. Phys. 78, 58485850.
Dean S.O. (2008). The rational for and expanding inertial fusion energy program. J. Fusion Energy 27, 149153.
Einstein A. (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt (About a heuristic position of generation and transmutation of light). Annalen der Physik, 17, 132145.
Frischmuth-Hoffmann G., Görlich P. & Hora H. (1960). Dependence of the photoemission of multialkali cathodes. Zeitschrift f. Naturforschung 15, 10141016.
Goldsmid H.J., Hora H. & Paul G.L. (1984). Anomalous heat conduction of ion-implanted amorphous layers in silicon crystals using a laser-probe technique. Phys. Stat. Sol. (a) 81, K127K130.
Hoffmann D.H.H., Blasevic A., Ni P., Rosmej P., Roth M., Tahir N.A.A., Tauschwitz A., Udrea S., Vanentsov D., Weyrich K. & Maron Y. (2005). Present and future perspectives for high energy density physics with intensive heavy ion and laser beams Laser Part. Beams, 23, 4754.
Hora H. (1969). Nonlinear confining and deconfining forces associated with interaction of laser radiation with plasma. Phys. Fluids 12, 182188.
Hora H. (1983). Stresses in silicon crystals from ion-implanted amorphous regions Appl. Phys. A 32, 15.
Hora H. (2009). Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser Part. Beams 27, 207222.
Hora H. & Ray P.S. (1978). Increased nuclear fusion yields of inertially confined DT plasma due to reheat. Zeitschrift f. Naturforschung A33, 890894.
Hora H., Badziak J.Read M.N., Li Yu-Tong, Liang Tian-Jiao, Liu Hong Sheng Zheng-Ming, Zhang Jie, Osman F., Miley G.H., Zhang Weiyan, He Xianto, Peng Hanscheng, Glowacz S., Jablonski S., Wolowski J., Skladanowski Z., Jungwirth K., Rohlena K. & Ullschmied J. (2007). Fast ignition by laser driven beams of very high intensity. Phys. Plasmas 14, 072701, 1–7.
Hora H., Badziak J., Boody F., Höpfl R., Jungwirth K., Kralikova B., Krasa J., Laska L., Parys P., Perina P., Pfeifer K. & Rohlena J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Optics Communications 207 333338.
Hora H. & Kabiersch G.B. (1968). Combined infrared photoemission from CsSb. Phys. Status Solidi 27, 593600.
Hora H., Kantlehner R. & Riehl N. (1965). Nonlinearities and discontinuities of the photoemission from multialkali cathodes at nitrogen temperatures. Zeitschrift f. Naturforschung 20A, 15911599.
Hora H., Kantlehner R. & Riehl N. (1966). Intensity hysteresis of the photoemission from multialkali cathodes at 77K. Zeitschrift f. Physik 190, 286294.
Hora H. & Kantlehner R. (1969). Thermosensitive Discontinuities and hysteresis of the photoemission of alkali antimonide cathodes at high light intensities. Phys. Status Solidi 33, 669681.
Geissel M., Habs D., Hegelich M., Karsch S., Ledingham K., Neely D., Lindl J.D., (2005) The Edward Teller Medal Lecture: the evolution toward indirect drive and two decades of progress toward ignition and burn, in Edward Teller Lectures: Laser and Inertial Fusion Energy (H. Hora and G.H. Miley eds.) London: Imperial College Press, pp, 121147.
Lipson A., Heuser B.J., Castanov C., Miley G., Lyakov B. & Mitin A. (2005). Transport and magnetic anomalies below 70 K in a hydrogen cycled Pd foil with a thermally grown oxide. Phys. Rev. B 72, 212507/1-6.
Malvezzi A.M., Kurz H. & Bloembergen N. (1985). Nonlinear photoemission from picosecond irradiatied silicon. Appl. Phys. A 36, 143150.
Miley G., Hora H., Philberth K., Lipson A. & Shrestha P.J. (2009). Radiochemical Comparisons on Low Energy Nuclear Reactions and Uranium. In Low-Energy Nuclear Reactions and New Energy Technologies Source Book (Marwan J. & Krivit S.B., Eds.). Washington, DC: American Chemical Society.
Miley G.H. & Yang X. (2008). Deuterium Cluster target for Ultra-High Density. In Proceedings from ANS-TOFE Conference. San Francisco, California.
Miley G.H., Hora H., Lipson A., Luo N. & Shrestha J. (2007). Future power generation by lenr with thin-film electrons. American Chemical Society 233th Annual Meeting, Chicago, March.
Miley G.H., Hora H., Osman F., Evans P. & Toups P. (2005). Single event laser fusion using ns.MJ laser pulses. Laser Part. Beams 23, 453460.
Moses E. (2008). Ignition on the National Ignition Facility. J. Phys.: Conf. Ser. 112, 12003/1-4.
Mulser P., Kanapathipillai M. & Hoffmann D.H.H. (2005). Two very efficient nonlinear laser absorption mechanisms in clusters. Phys. Rev. Lett. 95, 103401.
Nuckolls J.H. & Wood L. (2005). Fast igniter for electron beam fusion. In Edward Teller Lectures: Laser and Inertial Fusion Energy (Hora H. & Miley G.H., Eds.). pp. 1314, London: Imperial College Press.
Roth M., Brambrink E., Audebert B., Blazevic A., Clarke R., Cobble , Ruhl H., Schlegel T. & Schreiber J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.
Sari A.H., Osman F., Doolan K.R., Ghoranneviss M., Hora H., Höpfl R., Benstetter G. & Hantehzadeh H.M. (2005). Application of laser driven fast high density plasma blocks for ion implantation. Laser Part. Beams 23, 467473.
Shockley W. (1950) Electrons and Holes in Semiconductors New York: Van Nostrand.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 219 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th November 2017. This data will be updated every 24 hours.