Skip to main content Accessibility help
×
×
Home

XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH

  • U. Zastrau (a1) (a2), T. Burian (a3), J. Chalupsky (a3), T. Döppner (a4), T.W.J. Dzelzainis (a5), R.R. Fäustlin (a6), C. Fortmann (a4), E. Galtier (a7) (a8), S.H. Glenzer (a4), G. Gregori (a9), L. Juha (a3), H.J. Lee (a7), R.W. Lee (a4) (a7), C.L.S. Lewis (a5), N. Medvedev (a6), B. Nagler (a7), A.J. Nelson (a4), D. Riley (a5), F.B. Rosmej (a8) (a10), S. Toleikis (a6), T. Tschentscher (a11), I. Uschmann (a1) (a2), S.M. Vinko (a9), J.S. Wark (a9), T. Whitcher (a9) and E. Förster (a1) (a2)...
Abstract

We report on experiments aimed at the generation and characterization of solid density plasmas at the free-electron laser FLASH in Hamburg. Aluminum samples were irradiated with XUV pulses at 13.5 nm wavelength (92 eV photon energy). The pulses with duration of a few tens of femtoseconds and pulse energy up to 100 µJ are focused to intensities ranging between 1013 and 1017 W/cm2. We investigate the absorption and temporal evolution of the sample under irradiation by use of XUV and optical spectroscopy. We discuss the origin of saturable absorption, radiative decay, bremsstrahlung and atomic and ionic line emission. Our experimental results are in good agreement with simulations.

Copyright
Corresponding author
Address correspondence and reprint requests to: U. Zastrau, Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Max-Wien Platz 1, 07743 Jena, Germany. E-mail: ulf.zastrau@uni-jena.de
References
Hide All
Ackermann, W., et al. (2007). Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336.
Almbladh, C.-O., Morales, A.L., et al. (1989). Theory of auger core-valence-valence processes in simple metals. I. Total yields and core-level lifetime widths. Phys. Rev. B 39, 34893502.
Bajt, S., Chapman, H., et al. (2009). Sub-micron focusing of soft X-ray free electron laser beam. SPIE Conf. Ser. 7361.
Bambynek, W., et al. (1972). X-ray fluorescence yields, auger, and Coster-Kronig transition probabilities. Rev. Mod. Phys. 44, 716813.
Cao, L., Uschmann, I., et al. (2007). Space-time characterization of laser plasma interactions in the warm dense matter regime. Laser Part. Beams 25, 239244.
Chalupský, J., Juha, L., et al. (2007). Characteristics of focused soft X-ray free-electron laser beam determined by ablation of organic molecular solids. Opt. Exp. 15, 60366043.
Chung, H., Chen, M., et al. (2005). Flychk: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energy Density Phys. 1, 312.
Cihelka, J., Juha, L., et al. (2009). Optical emission spectroscopy of various materials irradiated by soft X-ray free-electron laser. Proc. SPIE 7361, 73610P.
Davidson, R. (2003). Frontiers in High Energy Density Physics: The X-Games of Contemporary Science. New York: Academies Press.
Dufour, G., Mariot, J., et al. (1976). K-LL Auger spectrum of aluminium. Phys. Scripta 13, 370372.
Dzelzainis, T., Chalupsky, J., et al. (2010). Plasma emission spectroscopy of solids irradiated by intense XUV pulses from a free electron laser. High Energy Density Phys. 6, 109112.
Fäustlin, R., Zastrau, U., et al. (2010). A compact soft X-ray spectrograph combining high efficiency and resolution. J. Instr. 5, P02004.
Fortmann, C., Bornath, T., et al. (2009). X-ray Thomson scattering cross-section in strongly correlated plasmas. Laser Part. Beams 27, 311319.
Fortmann, C., Redmer, R., et al. (2006). Bremsstrahlung vs. Thomson scattering in VUV-FEL plasma experiments. High Energy Density Phys. 2, 57.
Galtier, E., Rosmej, F., et al. (2011). Decay of crystalline order and equilibration during solid-to-plasma transition induced by 20-fs microfocused 92 eV free electron laser pulses. Phys. Rev. Lett. 106, 164801.
Gaunt, J.A. (1930). Continuous absorption. Proc. R. Soc. A 126, 654.
Glenzer, S. & Redmer, R. (2009). X-ray Thomson scattering in high energy density plasmas. Rev. Mod. Phys. 81, 16251663.
Griem, H.R. (1997). Principles of Plasma Spectroscopy. Cambridge: Cambridge University Press.
Henke, B., et al. (1993). X-ray interactions: Photoabsorption, scattering, transmission, and reflection at e = 50–30000 eV, z = 1–92. At. Data Nuclear Data Tables 54, 181.
Kaiser, A., Rethfeld, B., et al. (2000). Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses. Phys. Rev. B 61, 1143711450.
Kaufman, V. & Martin, W. (1991). Wavelengths and energy level classifications for the spectra of aluminum. J. Phys. Chem. Ref. Data 20, 775858.
Kramers, H.A. (1923). On the theory of X-ray absorption and the continuous X-ray spectrum. Philos. Mag. 46, 836.
Lee, R.W., et al. (2002). Plasma-based studies with intense X-ray and particle beam sources. Laser Part. Beams 20, 527.
Lee, R.W., et al. (2003). Finite temperature dense matter studies on next-generation light sources. J. Opt. Soc. Am. B 20, 770.
Lewis, G., Lipkin, D., et al. (1941). Reversible photochemical processes in rigid media. A study of the phosphorescent state. J. Am. Chem. Soc. 63, 30053018.
Lin, Z., Zhigilei, V., et al. (2008). Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133.
Lindl, J., et al. (2004). The physics basis for ignition using indirect-drive targets in the National Ignition Facility. Phys. Plasmas 11, 339491.
Lochte-Holtgreven, W. (1995). Plasma diagnostics. InPlasma Diagnostics, 135. New York: AIP Press.
Lomonosov, I. (2007). Multi-phase equation of state for aluminum. Laser Part. Beams 25, 567584.
Lorazo, P., Lewis, L.J., et al. (2006). Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation. Phys. Rev. B 73, 134108.
MacFarlane, J., et al. (2006). Helios-Cr a 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling. J. Quant. Spectrosc. Radiat. Transf. 99, 381.
Medvedev, N., Zastrau, U., et al. (2011). Short-time electron dynamics in aluminum excited by femtosecond extreme ultraviolet radiation. Phys. Rev. Lett. 107, 165003.
Medvedev, N. & Rethfeld, B. (2009). Effective energy gap of semiconductors under irradiation with an ultrashort VUV laser pulse. EPL 88, 55001.
Nagler, B., Zastrau, U., et al. (2009). Turning solid aluminum transparent by intense soft X-ray photoionization. Nat. Phys. 5, 693696.
Nakano, N., et al. (1984). Development of a flat-field grazing-incidence XUV spectrometer and its application in picosecond XUV spectroscopy. Appl. Opt. 23, 23862392.
Nettelmann, N., et al. (2008). Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. Astrophys. J. 683, 1217.
Recoules, V., Clérouin, J., et al. (2006). Effect of intense laser irradiation on the lattice stability of semiconductors and metals. Phys. Rev. Lett. 96, 055503.
Rethfeld, B., Kaiser, A., et al. (2002). Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65, 214303.
Riley, D., Khattak, F., et al. (2007). Spectrally resolved X-ray scatter from laser-shock-driven plasmas. Laser Part. Beams 25, 465469.
Rosmej, F.B. (2001). A new type of analytical model for complex radiation emission of hollow ions in fusion, laser and heavy-ion-beam-produced plasmas. Europhys. Lett. 55, 472478.
Rus, B., Mocek, T., et al. (2011). High energy density matter generation using a focused soft-X-ray laser for volumetric heating of thin foils. High Energy Density Phys. 7, 1116.
Saumon, D., et al. (2000). Modelling pressure-ionization of hydrogen in the context of astrophysics. High Press. Res. 16, 331.
Siwick, B.J., et al. (2003). An atomic-level view of melting using femtosecond electron diffraction. Sci. 302, 13821385.
Tiedtke, K., Azima, A., et al. (2009). The soft X-ray free-electron laser FLASH at DESY: Beamlines, diagnostics and end-stations. New J. Phys. 11, 023029.
Toleikis, S., Fäustlin, R., et al. (2010). Soft X-ray scattering using FEL radiation for probing near-solid density plasmas at few electron volt temperatures. High Energy Density Phys. 6, 1520.
Vinko, S. (2010). Creation and Study of Matter in Extreme Conditions by High-intensity Free-electron Laser Radiation. PhD thesis. Oxford: University of Oxford.
Vinko, S., Gregori, G., et al. (2009). Free-free opacity in warm dense aluminum. High Energy Density Phys. 5, 124131.
Vinko, S., Zastrau, U., et al. (2010). Electronic structure of an XUV photo-generated solid-density aluminum plasma. Phys. Rev. Lett. 104, 225001.
von Barth, U. & Grossmann, G. (1982). Dynamical effects in X-ray spectra and the final state rule. Phys. Rev. B 25, 51505179.
Wilks, S., Kruer, W., et al. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.
Zastrau, U., Fortmann, C., et al. (2008). Bremsstrahlung and line spectroscopy of warm dense aluminum heated by XUV free electron laser. Phys. Rev. E 78, 066406.
Zastrau, U., Hilbert, V., et al. (2011). In-situ determination of dispersion and resolving power in simultaneous multiple-angle XUV spectroscopy. J. Instr. 6, P10001.
Ziaja, B., Weckert, E., et al. (2007). Statistical model of radiation damage within an atomic cluster irradiated by photons from free-electron-laser. Laser Part. Beams 25, 407414.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed