Hostname: page-component-cb9f654ff-9b74x Total loading time: 0 Render date: 2025-08-11T14:24:40.868Z Has data issue: false hasContentIssue false

High-frequency and heteroskedasticity identification in multicountry models: Revisiting spillovers of monetary shocks

Published online by Cambridge University Press:  31 July 2025

Michael Pfarrhofer
Affiliation:
Department of Economics, WU Vienna University of Economics and Business, Vienna, Austria
Anna Stelzer*
Affiliation:
Monetary Policy Section, Oesterreichische Nationalbank, Vienna, Austria
*
Corresponding author: Anna Stelzer; Email: anna.stelzer@oenb.at

Abstract

We explore the international transmission of monetary policy and central bank information shocks originating from the United States and the euro area. Employing a panel vector autoregression, we use macroeconomic and financial variables across several major economies to address both static and dynamic spillovers. To identify structural shocks, we introduce a novel approach that combines external instruments with heteroskedasticity-based identification and sign restrictions. Our results suggest significant spillovers from European Central Bank and Federal Reserve policies to each other’s economies, global aggregates, and other countries. These effects are more pronounced for central bank information shocks than for pure monetary policy shocks, and the dominance of the US in the global economy is reflected in our findings.

Information

Type
Articles
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Altavilla, C., Brugnolini, L., Gürkaynak, R.S., Motto, R. and Ragusa, G.. (2019). Measuring euro area monetary policy. Journal of Monetary Economics 108, 162179.10.1016/j.jmoneco.2019.08.016CrossRefGoogle Scholar
Amir-Ahmadi, P., Matthes, C. and Wang, M. C.. (2022). Understanding instruments in macroeconomics–A study of high-frequency identification. Technical report, mimeo.Google Scholar
Arias, J.E., Rubio-Ramírez, J.F. and Waggoner, D.F.. (2018) Inference based on structural vector autoregressions identified with sign and zero restrictions: theory and applications. Econometrica 86(2), 685720.10.3982/ECTA14468CrossRefGoogle Scholar
Bai, J. and Ng, S.. (2007) Determining the number of primitive shocks in factor models. Journal of Business & Economic Statistics 25(1), 5260.10.1198/073500106000000413CrossRefGoogle Scholar
Barigozzi, M., Conti, A.M. and Luciani, M.. (2014) Do euro area countries respond asymmetrically to the common monetary policy? Oxford Bulletin of Economics and Statistics 76(5), 693714.10.1111/obes.12038CrossRefGoogle Scholar
Bauer, M.D. and Swanson, E.T.. (2023a) An alternative explanation for the ”Fed information effect. American Economic Review 113(3), 664700.10.1257/aer.20201220CrossRefGoogle Scholar
Bauer, M.D. and Swanson, E.T.. (2023b) A reassessment of monetary policy surprises and high-frequency identification. NBER Macroeconomics Annual 37(1), 87155.10.1086/723574CrossRefGoogle Scholar
Baumeister, C. and Hamilton, J.D.. (2015) Sign restrictions, structural vector autoregressions, and useful prior information. Econometrica 83(5), 19631999.10.3982/ECTA12356CrossRefGoogle Scholar
Bertsche, D. and Braun, R.. (2022) Identification of structural vector autoregressions by stochastic volatility. Journal of Business & Economic Statistics 40(1), 328341.10.1080/07350015.2020.1813588CrossRefGoogle Scholar
Borio, C.E. and Hofmann, B.. (2017) Is monetary policy less effective when interest rates are persistently low? BIS Working Paper 628.Google Scholar
Breitenlechner, M., Georgiadis, G. and Schumann, B.. (2022) What goes around comes around: how large are spillbacks from US monetary policy? Journal of Monetary Economics 131, 4560.10.1016/j.jmoneco.2022.07.001CrossRefGoogle Scholar
Ca’Zorzi, M., Dedola, L., Georgiadis, G., Jarocinski, M., Stracca, L. and Strasser, G.. (2023) Making waves: monetary policy and its asymmetric transmission in a globalized world. International Journal of Central Banking 19(2), 95144.Google Scholar
Caldara, D. and Herbst, E.. (2019) Monetary policy, real activity, and credit spreads: evidence from Bayesian proxy SVARs. American Economic Journal: Macroeconomics 11(1), 157192.Google Scholar
Carriero, A., Marcellino, M. and Tornese, T.. (2024) Blended identification in structural VARs. Journal of Monetary Economics 146, 103581.10.1016/j.jmoneco.2024.103581CrossRefGoogle Scholar
Carvalho, C.M., Polson, N.G. and Scott, J.G.. (2010) The horseshoe estimator for sparse signals. Biometrika 97(2), 465480.CrossRefGoogle Scholar
Cesa-Bianchi, A. and Sokol, A.. (2022) Financial shocks, credit spreads, and the international credit channel. Journal of International Economics 135, 103543.10.1016/j.jinteco.2021.103543CrossRefGoogle Scholar
Chan, J., Eisenstat, E. and Yu, X.. (2022) Large bayesian VARs with factor stochastic volatility: identification, order invariance and structural analysis, arXiv, 2207.03988.Google Scholar
Ciccarelli, M., Maddaloni, A. and Peydró, J.L.. (2013) Heterogeneous transmission mechanism: monetary policy and financial fragility in the eurozone. Economic Policy 28(75), 459512.10.1111/1468-0327.12015CrossRefGoogle Scholar
Crespo Cuaresma, J., Doppelhofer, G., Feldkircher, M. and Huber, F.. (2019) Spillovers from US monetary policy: evidence from a time varying parameter global vector auto-regressive model. Journal of the Royal Statistical Society: Series A (Statistics in Society) 183(3), 831861.10.1111/rssa.12439CrossRefGoogle Scholar
De Santis, R.A. and Surico, P.. (2013) Bank lending and monetary transmission in the euro area. Economic Policy 28(75), 423457.10.1111/1468-0327.12013CrossRefGoogle Scholar
Dedola, L., Rivolta, G. and Stracca, L.. (2017) If the fed sneezes, who catches a cold? Journal of International Economics 108, S23S41.10.1016/j.jinteco.2017.01.002CrossRefGoogle Scholar
Degasperi, R., Hong, S. and Ricco, G.. (2020) The global transmission of us monetary policy. CEPR Discussion Paper 14533.Google Scholar
Ehrmann, M. and Fratzscher, M.. (2009) Global financial transmission of monetary policy shocks. Oxford Bulletin of Economics and Statistics 71(6), 739759.10.1111/j.1468-0084.2009.00561.xCrossRefGoogle Scholar
Ehrmann, M., Fratzscher, M. and Rigobon, R.. (2011) Stocks, bonds, money markets and exchange rates: measuring international financial transmission. Journal of Applied Econometrics 26(6), 948974.10.1002/jae.1173CrossRefGoogle Scholar
Eickmeier, S. and Ng, T.. (2015) How do US credit supply shocks propagate internationally? A GVAR approach. European Economic Review 74, 128145.10.1016/j.euroecorev.2014.11.011CrossRefGoogle Scholar
Feldkircher, M., Huber, F., Koop, G. and Pfarrhofer, M.. (2022) Approximate Bayesian inference and forecasting in huge-dimensional multicountry VARs. International Economic Review 63(4), 16251658.10.1111/iere.12577CrossRefGoogle Scholar
Feldkircher, M., Huber, F. and Pfarrhofer, M.. (2020b) Factor Augmented Vector Autoregressions, Panel VARs, and Global VARs. In: Feldkircher, M., Huber, F. and Pfarrhofer, M.. (ed.), Macroeconomic Forecasting in the Era of Big Data, pp. 6593, Springer.10.1007/978-3-030-31150-6_3CrossRefGoogle Scholar
Feldkircher, M., Gruber, T. and Huber, F.. (2020a) International effects of a compression of euro area yield curves. Journal of Banking & Finance 113, 105533.10.1016/j.jbankfin.2019.03.017CrossRefGoogle Scholar
Gambetti, L., Korobilis, D., Tsoukalas, J. and Zanetti, F.. (2023) Agreed and disagreed uncertainty, arXiv, 2302.01621.Google Scholar
Gardner, B., Scotti, C. and Vega, C.. (2022) Words speak as loudly as actions: central bank communication and the response of equity prices to macroeconomic announcements. Journal of Econometrics 231(2), 387409.10.1016/j.jeconom.2021.07.014CrossRefGoogle Scholar
Georgiadis, G. (2015) Examining asymmetries in the transmission of monetary policy in the euro area: evidence from a mixed cross-section global VAR model. European Economic Review 75, 195215.10.1016/j.euroecorev.2014.12.007CrossRefGoogle Scholar
Georgiadis, G. and Jarociński, M.. (2023) Global spillovers from multi-dimensional US monetary policy. ECB Working Paper 2881.Google Scholar
Gerko, E. and Rey, H.. (2017) Monetary policy in the capitals of capital. Journal of the European Economic Association 15(4), 721745.10.1093/jeea/jvx022CrossRefGoogle Scholar
Gilchrist, S. and Zakrajšek, E.. (2012) Credit spreads and business cycle fluctuations. American Economic Review 102(4), 16921720.10.1257/aer.102.4.1692CrossRefGoogle Scholar
Gilchrist, S., Yankov, V. and Zakrajšek, E.. (2009) Credit market shocks and economic fluctuations: evidence from corporate bond and stock markets. Journal of Monetary Economics 56(4), 471493.10.1016/j.jmoneco.2009.03.017CrossRefGoogle Scholar
Greenwood-Nimmo, M., Nguyen, V. H. and Shin, Y.. (2021) Measuring the connectedness of the global economy. International Journal of Forecasting 37(2), 899919.10.1016/j.ijforecast.2020.10.003CrossRefGoogle Scholar
Griller, S., Huber, F. and Pfarrhofer, M.. (2024) Financial markets and legal challenges to unconventional monetary policy. European Economic Review 163, 104680.10.1016/j.euroecorev.2024.104680CrossRefGoogle Scholar
Gürkaynak, R.S., Kısacıkoğlu, B. and Wright, J.H.. (2020) Missing events in event studies: identifying the effects of partially measured news surprises. American Economic Review 110(12), 38713912.10.1257/aer.20181470CrossRefGoogle Scholar
Gürkaynak, R.S., Sack, B.P. and Swanson, E.T.. (2005) Do actions speak louder than words? The response of asset prices to monetary policy actions and statements. International Journal of Central Banking 1(1), 5593.Google Scholar
Hausman, J. and Wongswan, J.. (2011) Global asset prices and FOMC announcements. Journal of International Money and Finance 30(3), 547571.10.1016/j.jimonfin.2011.01.008CrossRefGoogle Scholar
Huber, F., Matthes, C. and Pfarrhofer, M.. (2024) General seemingly unrelated local projections, arXiv, 2410.17105.Google Scholar
Huber, F., Krisztin, T. and Pfarrhofer, M.. (2023) A Bayesian panel vector autoregression to analyze the impact of climate shocks on high-income economies. Annals of Applied Statistics 17(2), 15431573.10.1214/22-AOAS1681CrossRefGoogle Scholar
Jarociński, M. (2022) Central bank information effects and transatlantic spillovers. Journal of International Economics 139, 103683.10.1016/j.jinteco.2022.103683CrossRefGoogle Scholar
Jarociński, M. and Karadi, P.. (2020) Deconstructing monetary policy surprises – the role of information shocks. American Economic Journal: Macroeconomics 12(2), 143.Google Scholar
Kastner, G. and Huber, F.. (2020) Sparse bayesian vector autoregressions in huge dimensions. Journal of Forecasting 39(7), 11421165.10.1002/for.2680CrossRefGoogle Scholar
Kearns, J., Schrimpf, A. and Xia, F.D.. (2023) Explaining monetary spillovers: the matrix reloaded. Journal of Money, Credit and Banking 55(6), 15351568.10.1111/jmcb.12996CrossRefGoogle Scholar
Kim, S. (2001) International transmission of US monetary policy shocks: evidence from VAR’s. Journal of Monetary Economics 48(2), 339372.10.1016/S0304-3932(01)00080-0CrossRefGoogle Scholar
Kim, S., Shephard, N. and Chib, S.. (1998) Stochastic volatility: likelihood inference and comparison with ARCH models. Review of Economic Studies 65(3), 361393.10.1111/1467-937X.00050CrossRefGoogle Scholar
Korobilis, D. (2022) A new algorithm for structural restrictions in Bayesian vector autoregressions. European Economic Review 148, 104241.10.1016/j.euroecorev.2022.104241CrossRefGoogle Scholar
Lewis, D.J. (2021) Identifying shocks via time-varying volatility. The Review of Economic Studies 88(6), 30863124.10.1093/restud/rdab009CrossRefGoogle Scholar
Li, D., Plagborg-Møller, M. and Wolf, C.K.. (2024) Local projections vs. VARs: lessons from thousands of DGPs. Journal of Econometrics 244(2), 105722.10.1016/j.jeconom.2024.105722CrossRefGoogle Scholar
Makalic, E. and Schmidt, D.F.. (2015) A simple sampler for the horseshoe estimator. IEEE Signal Processing Letters 23(1), 179182.10.1109/LSP.2015.2503725CrossRefGoogle Scholar
McCracken, M. and Ng, S.. (2016) FRED-MD: a monthly database for macroeconomic research. Journal of Business & Economic Statistics 34(4), 574589.10.1080/07350015.2015.1086655CrossRefGoogle Scholar
Mertens, K. and Ravn, M.O.. (2013) The dynamic effects of personal and corporate income tax changes in the United States. American Economic Review 103(4), 12121247.10.1257/aer.103.4.1212CrossRefGoogle Scholar
Miranda-Agrippino, S. and Rey, H.. (2020) US monetary policy and the global financial cycle. The Review of Economic Studies 87(6), 27542776.10.1093/restud/rdaa019CrossRefGoogle Scholar
Miranda-Agrippino, S. and Nenova, T.. (2022) A tale of two global monetary policies. Journal of International Economics 136, 103606.10.1016/j.jinteco.2022.103606CrossRefGoogle Scholar
Nakamura, E. and Steinsson, J.. (2018) High-frequency identification of monetary non-neutrality: the information effect. Quarterly Journal of Economics 133(3), 12831330.10.1093/qje/qjy004CrossRefGoogle Scholar
Plagborg-Møller, M. and Wolf, C.K.. (2021) Local projections and VARs estimate the same impulse responses. Econometrica 89(2), 955980.10.3982/ECTA17813CrossRefGoogle Scholar
Potjagailo, G. (2017) Spillover effects from Euro area monetary policy across Europe: a factor-augmented VAR approach. Journal of International Money and Finance 72, 127147.10.1016/j.jimonfin.2017.01.003CrossRefGoogle Scholar
Ramey, V.A. (2016) Macroeconomic shocks and their propagation. Handbook of Macroeconomics 2, 71162.10.1016/bs.hesmac.2016.03.003CrossRefGoogle Scholar
Rigobon, R. (2003) Identification through heteroskedasticity. Review of Economics and Statistics 85(4), 777792.10.1162/003465303772815727CrossRefGoogle Scholar
Schlaak, T., Rieth, M. and Podstawski, M.. (2023) Monetary policy, external instruments, and heteroskedasticity. Quantitative Economics 14(1), 161200.10.3982/QE1511CrossRefGoogle Scholar
Sentana, E. and Fiorentini, G.. (2001) Identification, estimation and testing of conditionally heteroskedastic factor models. Journal of Econometrics 102(2), 143164.10.1016/S0304-4076(01)00051-3CrossRefGoogle Scholar
Tenreyro, S. and Thwaites, G.. (2016) Pushing on a string: US monetary policy is less powerful in recessions. American Economic Journal: Macroeconomics 8(4), 4374.Google Scholar