Skip to main content Accessibility help
×
Home

102.14 A Note on the Feuerbach triangle

  • Sava Grozdev (a1), Hiroshi Okumura (a2) and Deko Dekov (a3)

Abstract

  • An abstract is not available for this content so a preview has been provided below. Please use the Get access link above for information on how to access this content.

Copyright

References

Hide All
1. Leversha, Gerry, The Geometry of the Triangle, UKMT (2013).
2. Weisstein, E. W., MathWorld - A Wolfram Web Resource, Feuerbach triangle. http://mathworld.wolfram.com/
3. Lozada, César, Index of triangles referenced in ETC. http://faculty.evansville.edu/ck6/encyclopedia/IndexOfTrianglesReferencedInETC.html
4. Grozdev, S. and Dekov, D., Barycentric coordinates: formula sheet, International Journal of Computer Discovered Mathematics 1, (2) 2016 pp. 7582. http://www.journal-1.eu/2016-2/Grozdev-Dekov-Barycentric-Coordinates-pp.75-82.pdf
5. Kiss, S. N., Distances among the Feuerbach Points, Forum Geometricorum 16 (2016) pp. 373379. http://forumgeom.fau.edu/FG2016volume16/FG201648.pdf
6. Kimberling, C., Encyclopedia of Triangle Centers - ETC, http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
7. Grozdev, S. and Dekov, D., Computer-discovered mathematics: half-cevian triangles, International Journal of Computer Discovered Mathematics, 1 (2), 2016, pp. 18. http://www.journal-1.eu/2016-2/Grozdev-Dekov-Half-Cevian-Triangles-pp.1-8.pdf

102.14 A Note on the Feuerbach triangle

  • Sava Grozdev (a1), Hiroshi Okumura (a2) and Deko Dekov (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.