An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
1
Burk, F., Euler's constant, College Math. J.16 (1985) p. 279.10.1080/07468342.1985.11972895CrossRefGoogle Scholar
Johnsonbaugh, R., The trapezoid rule, Stirling's formula, and Euler's constant, Amer. Math. Monthly88 (1981) pp. 696–698.10.1080/00029890.1981.11995344CrossRefGoogle Scholar
4
Mercer, P. R., On a precursor to Stirling's formula, Math. Gaz.87 (November 2003) pp. 530–532.10.1017/S002555720017384XCrossRefGoogle Scholar
5
Mercer, P. R., Euler's constant and the speed of convergence, Math. Gaz.107 (July 2023) pp. 320–323.10.1017/mag.2023.66CrossRefGoogle Scholar
6
Rippon, P. J., Convergence with pictures, Amer. Math. Monthly93 (1986) pp. 476–478.10.1080/00029890.1986.11971862CrossRefGoogle Scholar
7
Whittaker, E. T. and Watson, G. N., A course of modern analysis (3rd edn,) Cambridge University Press (1920).Google Scholar
8
Young, R. M., Euler's constant, Math. Gaz.75 (June 1991) pp. 187–190.10.2307/3620251CrossRefGoogle Scholar
9
Yingying, L., On Euler's constant – calculating sums by integrals, Amer. Math. Monthly109 (2002) pp. 845–850.Google Scholar
10
Elsner, C. and Prévost, M., Expansion of Euler’s constant in terms of zeta numbers, J. Math. Anal. Appl.398 (2013) pp. 508–526.10.1016/j.jmaa.2012.08.065CrossRefGoogle Scholar