Hostname: page-component-7dd5485656-hw7sx Total loading time: 0 Render date: 2025-10-21T20:58:34.423Z Has data issue: false hasContentIssue false

109.48 A generalisation and proof of the Steiner–Lehmus Theorem

Published online by Cambridge University Press:  15 October 2025

Quang Hung Tran*
Affiliation:
High School for Gifted Students, Hanoi University of Science, Vietnam National University at Hanoi, Hanoi, Vietnam e-mail: tranquanghung@hus.edu.vn

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Notes
Copyright
© The Authors, 2025 Published by Cambridge University Press on behalf of The Mathematical Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Chorlton, F., A Generalisation of the Steiner-Lehmus Theorem, Math. Gaz., 69 (October 1985) pp. 215216.CrossRefGoogle Scholar
Montes, A., Recio, T., Generalizing the Steiner-Lehmus theorem using the Gröbner cover, Math. Comput. Simul, 104 (2014) pp. 6781.CrossRefGoogle Scholar
Gilbert, G. and MacDonnel, D., The Steiner-Lehmus theorem, Amer. Math. Monthly 70(1) 1963 pp. 7980.CrossRefGoogle Scholar
Hajja, M., Other Versions of the Steiner-Lehmus Theorem, Amer. Math. Monthly, 108(8) (2001) pp. 760767.CrossRefGoogle Scholar
Abu-Saymeh, S. and Hajja, M., More variations on the Steiner-Lehmus theme, Math. Mag., 103(556) (2019) pp. 111.Google Scholar
Hajja, M., Stronger forms of the Steiner-Lehmus theorem, Forum Geom., 8(8) (2008) pp. 157161.Google Scholar
Malesevic, J. V., A Direct Proof of the Steiner-Lehmus Theorem, Math. Mag., 43(2) (1970) pp. 101102.CrossRefGoogle Scholar