We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
1
Ramanujan, S., A Proof of Bertrand’s Postulate, J. Indian Math. Society (1919) pp. 181–182.Google Scholar
Erdős, P., Beweis eines Satzes von Tschebyshef, Acta Sci. Math. (Szeged) 5 (1930-1932) pp. 194-198 (in German)Google Scholar
4
Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, B. G. Teubner (1909) Leipzig und Berlin. The Michigan Historical Reprint Series, The University of Michigan University Library.Google Scholar
5
Erdős, P., A theorem of Sylvester and Schur, J. London Math. Soc.9 (1934) pp. 191–258.Google Scholar
6
Meher, J. and Ram Murty, M., Ramanujan’s proof of Bertrand’s postulate, Amer. Math. Monthly120 (2013) pp. 650–653.CrossRefGoogle Scholar