We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
1
Cauchy, A.-L., Sur les formules qui resultent de l’emploie du signe et sur > ou <, et sur les moyennes entre plusieurs quantites, Cours d’Analyse, 1er Partie: Analyse Algebrique, (1821), pp. 373–377.Google Scholar
2
Bunyakovsky, V. Y., Sur quelques inegalites concernant les integrales ordinaires et les integrales aux differences finies, Mem. Acad. St. Petersburg (Ser. 7) 1 (1859), pp. 1–18.Google Scholar
3
Schwarz, H. A., Über ein die Flächen kleinsten Flächeninhalts betreffendes Problem der Variationsrechnung, Acta Soc. Scient. Fen. 15 (1885), pp. 315–362.Google Scholar
4
Callebaut, D. K., Generalization of the Cauchy-Schwarz inequality, J. Math. Anal. Appl. 12 (1965), pp. 491–494.CrossRefGoogle Scholar
5
Chee-Eng Ng, D., Another proof of the Cauchy-Schwarz inequality with complex algebra, Math. Gaz.93 (March 2009) pp. 104–105CrossRefGoogle Scholar
6
Dragomir, S. S., A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities, J. Inequal. Pure Appl. Math.4 (2003), Art. 63.Google Scholar
7
Farhadian, R., Remark on Cauchy-Schwarz inequality, Math. Gaz. 107CrossRefGoogle Scholar
8
Lord, N. J., Cauchy-Schwarz via collisions, Math. Gaz. 99 (November 2015) pp. 541–542.CrossRefGoogle Scholar
9
Masjed-Jamei, M., Dragomir, S. S., Srivastava, H. M., Some generalizations of the Cauchy-Schwarz and the Cauchy-Bunyakovsky inequalities involving four free parameters and their applications, Mathematical and Computer Modelling, 49 (2009), pp. 1960–1968.CrossRefGoogle Scholar
10
Yin, S., A new generalization on Cauchy-Schwarz inequality, Journal of Function Spaces, (2017), Art. ID 9576375.Google Scholar
11
Walker, S. G., A self-improvement to the Cauchy-Schwarz inequality, Statistics & Probability Letters.122 (2017), pp. 86–89.CrossRefGoogle Scholar