1.
Heath, T. L., The thirteen books of Euclid’s Elements, Vol. 2. Cambridge (1908).

2.
Agargun, A. G. and Fletcher, Colin R., al-Farisi and the fundamental theorem of arithmetic, Hist. Math.
21 (1994) pp. 162–173.

3.
Rashed, R., Matériaux pour l’histoire des nombres amiables, J. Hist. Arabic Sei.
6 (1982) pp. 209–278.

4.
Goldstein, C., On a seventeenth century version of the fundamental theorem of arithmetic, Hist. Math.
19 (1992) pp. 177–187.

5.
Gauss, C. F., Disquisitiones arithmeticae, Yale University Press (1966).

6.
Baker, A., A concise introduction to the theory of numbers, Cambridge (1984).

7.
Carmichael, R. D., The theory of numbers. Dover, New York (1959).

8.
Dickson, L. E., Introduction to the theory of numbers, Dover, New York (1957).

9.
Wright, H. N., First course in theory of numbers, John Wiley, New York (1964).

10.
Allenby, R. B. J. T., Rings, fields and groups, Edward Arnold (1991).

11.
Davenport, H., The higher arithmetic, Hutchinson House (1952).

12.
Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers, Oxford (1938).

13.
Hunter, I., Number theory, Oliver and Boyd (1964).

14.
Shockley, J. E., Introduction to number theory Holt, Rinehart and Winston, New York (1967).

15.
Shanks, D., Solved and unsolved problems in number theory, Vol. I, Spartan Books, Washington (1962).

16.
Stewart, B. M., Theory of numbers, Macmillan, New York (1952).

17.
Jones, B. W., The theory of numbers, Holt, Rinehart and Winston, New York (1955).

18.
Stark, H. M., An introduction to number theory, Markham, Chicago (1971).

19.
Wright, E. M., Number theory and other reminiscences of Viscount Cherwell, Notes and Records Roy. Soc.
London
42 (1988) pp. 197–204.

20.
Lindemann, F. A., The unique factorization of a positive integer, Quart. J. of Math.
4 (1933) pp. 319–320.

21.
Niven, I. and Zuckerman, H. S., An introduction to the theory of numbers, John Wiley, New York (1960).