Skip to main content Accessibility help

The number of preference orderings: a recursive approach

  • Ben Eggleston (a1)


  • An abstract is not available for this content so a preview has been provided below. Please use the Get access link above for information on how to access this content.



Hide All
1. Chandon, J. L., Lemaire, J., and Pouget, J., Dénombrement des quasi-ordres sur un ensemble fini, Mathématiques et Sciences Humaines 62 (1978) pp. 6180.
2. Riordan, J., An introduction to combinatorial analysis, John Wiley & Sons, Inc., New York (1958).
3. Weisstein, E. W., Stirling number of the second kind, MathWorld, accessed December 2014 at
4. Weisstein, E. W., Binomial coefficient, MathWorld, accessed December 2014 at
5. Barthelemy, J. P., An asymptotic equivalent for the number of total preorders on a finite set, Discrete Mathematics 29 (1980) pp. 311313.
6. Bailey, R. W., The number of weak orderings of a finite set, Social Choice and Welfare 15 (1998) pp. 559562.
7. Sloane, N. J. A., Online encyclopedia of integer sequences, accessed December 2014 at
8. Aitken, A. C., A problem in combinations, Edinburgh Mathematical Notes 28 (1933) pp. xviiixxiii.
9. Comtet, L., Advanced combinatorics: the art of finite and infinite expansions (revised edition), D. Reidel Publishing Company, Dordrecht, Holland (1974).
10. Kreweras, G., Une dualité élémentaire souvent utile dans les problèmes combinatoires, Mathématiques et Sciences Humaines 3 (1963) pp. 3141.

Related content

Powered by UNSILO

The number of preference orderings: a recursive approach

  • Ben Eggleston (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.