Skip to main content

Random walks arising from a Fibonacci's-rabbits scenario

  • Martin Griffiths (a1)
Hide All
1. Knott R., Fibonacci numbers and nature, accessed December 2014 at
2. Grimmett G. and Stirzaker D., Probability and random processes (3rd edn.), Oxford University Press (2001).
3. Benjamin A. T. and Quinn J. J., Proofs that really count, Mathematical Association of America (2003).
4. Burton D.M., Elementary number theory, McGraw-Hill (1998).
5. Knuth D. E., The art of computer programming, Volume 1, Addison-Wesley (1968).
6. Haggarty R., Fundamentals of mathematical analysis, Addison-Wesley (1989).
7. Wrede R. C. and Spiegel M. R., Schaum's outline of advanced calculus (3rd edn.), McGraw-Hill (2010).
8. Graham R. L., Knuth D. E. and Patashnik O., Concrete mathematics (2nd edn.), Addison-Wesley (1998).
9. Knott R., Fibonacci and Golden Ratio Formulae, accessed December 2014 at
10. Jones J. P., Diophantine representation of the Fibonacci numbers, Fibonacci Quarterly, 13 (1975) pp. 8488.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Mathematical Gazette
  • ISSN: 0025-5572
  • EISSN: 2056-6328
  • URL: /core/journals/mathematical-gazette
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 79 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th January 2018. This data will be updated every 24 hours.