No CrossRef data available.
Article contents
Unbounded Laplacians on Graphs: Basic Spectral Properties and the Heat Equation
Published online by Cambridge University Press: 12 May 2010
Abstract
We discuss Laplacians on graphs in a framework of regular Dirichlet forms. We focus on phenomena related to unboundedness of the Laplacians. This includes (failure of) essential selfadjointness, absence of essential spectrum and stochastic incompleteness.
Keywords
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 2010
References
Beurling, A., Deny, J..
Espaces de Dirichlet. I.
Le cas élémentaire
. Acta Math.,
99 (1958),
203–224.CrossRefGoogle Scholar
Beurling, A., Deny, J..
Dirichlet
spaces
. Proc. Nat. Acad. Sci. U.S.A.,
45 (1959),
208–215.CrossRefGoogle Scholar
N. Bouleau, F. Hirsch. Dirichlet forms and analysis
on Wiener space. Volume 14 ofde Gruyter Studies in Mathematics, Walter de Gruyter
& Co., Berlin, 1991.
F. R. K. Chung. Spectral Graph Theory. CBMS
Regional Conference Series in Mathematics, 92, American Mathematical Society, Providence,
RI, 1997.
Chung, F. R. K., Grigoryan, A.,
Yau, S.-T..
Higher eigenvalues and
isoperimetric inequalities on Riemannian manifolds and
graphs
. Comm. Anal. Geom., 8
(2000), No. 5,
969–1026.CrossRefGoogle Scholar
Y. Colin de Verdière. Spectres de graphes. Soc.
Math. France, Paris, 1998.
E. B. Davies. Heat kernels and spectral theory.
Cambridge University press, Cambridge, 1989.
E. B. Davies. Linear operators and their spectra.
Cambridge Studies in Advanced Mathematics, 106. Cambridge University Press, Cambridge,
2007.
Dodziuk, J..
Difference Equations,
isoperimetric inequality and transience of certain random
walks
. Trans. Amer. Math. Soc.,
284 (1984), No. 2,
787–794.CrossRefGoogle Scholar
J. Dodziuk. Elliptic operators on infinite
graphs. Analysis, geometry and topology of elliptic operators, 353–368, World
Sci. Publ., Hackensack, NJ, 2006.
J. Dodziuk, W. S. Kendall. Combinatorial
Laplacians and isoperimetric inequality. From local times to global geometry,
control and physics (Coventry, 1984/85), 68–74, Pitman Res. Notes Math. Ser., 150, Longman
Sci. Tech., Harlow, 1986.
J. Dodziuk, V. Matthai. Kato’s inequality
and asymptotic spectral properties for discrete magnetic Laplacians. The
ubiquitous heat kernel, 69–81, Contemp. Math., 398, Amer. Math. Soc., Providence, RI,
2006.
Feller, W..
On boundaries and
lateral conditions for the Kolmogorov differential equations
.
Ann. of Math. (2), 65
(1957), 527–570.CrossRefGoogle Scholar
Fujiwara, K..
Laplacians on rapidly
branching trees
. Duke Math Jour.,
83 (1996), No. 1,
191-202.CrossRefGoogle Scholar
M. Fukushima, Y. Oshima, M.Takeda. Dirichlet forms
and symmetric Markov processes. de Gruyter Studies in Mathematics, 19. Walter de Gruyter
& Co., Berlin, 1994.
Grigor’yan, A..
Analytic and
geometric background of reccurrence and non-explosion of the brownian motion on
riemannian manifolds
. Bull. Am. Math. Soc.,
36 (1999), No. 2,
135–249.CrossRefGoogle Scholar
S. Haeseler, M. Keller, Generalized
solutions and spectrum for Dirichlet forms on graphs, preprint 2010,
arXiv:1002.1040.
Häggström, O., Jonasson, J., Lyons, R..
Explicit isoperimetric
constants and phase transitions in the random-cluster model
.
Ann. Probab., 30 (2002), No.
1, 443–473.Google Scholar
Higuchi, Y., Shirai, T..
Isoperimetric constants
of (d,f)-regular planar
graphs
. Interdiscip. Inform. Sci.,
9 (2003), No. 2,
221–228.Google Scholar
Jorgensen, P. E. T..
Essential
selfadjointness of the graph-Laplacian
. J. Math.
Phys., 49 (2008), No. 7,
073510.CrossRefGoogle Scholar
Keller, M..
The essential spectrum
of Laplacians on rapidly branching tesselations
.
Math. Ann., 346 (2010), No.
1, 51–66.CrossRefGoogle Scholar
M. Keller, D. Lenz. Dirichlet forms and
stochastic completeness of graphs and subgraphs. preprint 2009,
arXiv:0904.2985.
M. Keller, N. Peyerimhoff. Cheeger
constants, growth and spectrum of locally tessellating planar graphs. to appear
in Math. Z., arXiv:0903.4793.
Mohar, B..
Light structures in
infinite planar graphs without the strong isoperimetric
property
. Trans. Amer. Math. Soc.,
354 (2002), No. 8,
3059–3074.CrossRefGoogle Scholar
Z.-M. Ma and M. Röckner. Introduction to the theory
of (non-symmetric) Dirichlet forms. Springer-Verlag, Berlin, 1992.
Metzger, B., Stollmann, P..
Heat kernel estimates
on weighted graphs
. Bull. London Math. Soc.,
32 (2000), No. 4,
477–483.CrossRefGoogle Scholar
Reuter, G. E. H..
Denumerable Markov
processes and the associated contraction semigroups
on
l
. Acta Math.,
97 (1957),
1–46.CrossRefGoogle Scholar
Sturm, K.-T.. textitAnalysis on local Dirichlet spaces. I: Recurrence,
conservativeness and L
p
-Liouville
properties. J. Reine Angew. Math., 456
(1994), No. 173–196. Google Scholar
Stollmann, P..
A convergence theorem
for Dirichlet forms with applications to boundary value problems with varying
domains
. Math. Z., 219
(1995), No. 2,
275–287.CrossRefGoogle Scholar
Stollmann, P., Voigt, J..
Perturbation of Dirichlet
forms by measures
. Potential Anal.
5 (1996), No. 2,
109–138.CrossRefGoogle Scholar
Urakawa, H..
The spectrum of an
infinite graph
. Can. J. Math.,
52 (2000), No. 5,
1057–1084.CrossRefGoogle Scholar
A. Weber. Analysis of the physical
Laplacian and the heat flow on a locally finite graph. Preprint 2008,
arXiv:0801.0812.
R. K. Wojciechowski. Stochastic completeness of
graphs, PhD thesis, 2007. arXiv:0712.1570v2.
Wojciechowski, R. K..
Heat kernel and
essential spectrum of infinite graphs
. Indiana Univ.
Math. J., 58 (2009), No. 3,
1419–1441.CrossRefGoogle Scholar
R. K. Wojciechowski. Stochastically
Incomplete Manifolds and Graphs. Preprint 2009, arXiv:0910.5636.
- 75
- Cited by