Hostname: page-component-7d684dbfc8-tvhzr Total loading time: 0 Render date: 2023-09-25T04:34:56.566Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

A Decomposition for Hardy Martingales III

Published online by Cambridge University Press:  20 June 2016

Department of Mathematics, J. Kepler Universität Linz, A-4040 Linz. e-mail:


We prove Davis decompositions for vector valued Hardy martingales and illustrate their use. This paper continues the work in [18] and [19] on Davis and Garsia Inequalities.

Research Article
Copyright © Cambridge Philosophical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



[1] Bourgain, J. Embedding L 1 in L 1/H 1 . Trans. Amer. Math. Soc. 278 (2) (1983), 689702.Google Scholar
[2] Bourgain, J. The dimension conjecture for polydisc algebras. Israel J. Math. 48 (4) (1984), 289304.CrossRefGoogle Scholar
[3] Bourgain, J. New Banach space properties of the disc algebra and H . Acta Math. 152 (1–2) (1984), 148.CrossRefGoogle Scholar
[4] Bourgain, J. and Davis, W. J. Martingale transforms and complex uniform convexity. Trans. Amer. Math. Soc. 294 (2) (1986), 501515.CrossRefGoogle Scholar
[5] Burkholder, D. L. Martingales and singular integrals in Banach spaces. In Handbook of the Geometry of Banach Spaces, Vol. I (North-Holland, Amsterdam, 2001), 233269.CrossRefGoogle Scholar
[6] Davis, B. On the integrability of the martingale square function. Israel J. Math. 8 (1970), 187190.CrossRefGoogle Scholar
[7] Davis, W. J., Garling, D. J. H. and Tomczak-Jaegermann, N. The complex convexity of quasinormed linear spaces. J. Funct. Anal. 55 (1) (1984), 110150.CrossRefGoogle Scholar
[8] Durrett, R. Brownian Motion and Martingales in Analysis. Wadsworth Mathematics Series (Wadsworth International Group, Belmont, CA, 1984).Google Scholar
[9] Edgar, G. A. Complex martingale convergence. In Banach Spaces (Columbia, Mo., 1984), Lecture Notes in Math. vol. 1166 (Springer, Berlin, 1985), pages 3859.CrossRefGoogle Scholar
[10] Edgar, G. A. Analytic martingale convergence. J. Funct. Anal. 69 (2) (1986), 268280.CrossRefGoogle Scholar
[11] Garling, D. J. H. On martingales with values in a complex Banach space. Math. Proc. Camb. Phil. Soc. 104 (2) (1988), 399406.CrossRefGoogle Scholar
[12] Garling, D. J. H. Hardy martingales and the unconditional convergence of martingales. Bull. London Math. Soc. 23 (2) (1991), 190192.CrossRefGoogle Scholar
[13] Garsia, A. M. Martingale Inequalities: Seminar Notes on Recent Progress. Mathematics Lecture Notes Series (W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973).Google Scholar
[14] Haagerup, U. and Pisier, G. Factorisation of analytic functions with values in noncommutative L 1-spaces and applications. Canad. J. Math. 41 (5) (1989), 882906.CrossRefGoogle Scholar
[15] Jones, P. W. and Müller, P. F. X. Conditioned Brownian motion and multipliers into SL . Geom. Funct. Anal. 14 (2) (2004), 319379.CrossRefGoogle Scholar
[16] Maurey, B. Système de Haar. In Séminaire Maurey–Schwartz 1974–1975: Espaces Lsup p, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. I et II, pages 26 pp. (erratum, p. 1). (Centre Math., École Polytech., Paris, 1975).Google Scholar
[17] Maurey, B. Isomorphismes entre espaces H 1 . Acta Math. 145 (1–2) (1980), 79120.CrossRefGoogle Scholar
[18] Müller, P. F. X. A Decomposition for Hardy Martingales. Indiana. Univ. Math. J. 61 (5) (2012), 180118016.CrossRefGoogle Scholar
[19] Müller, P. F. X. A Decomposition for Hardy Martingales II. Math. Proc. Camb. Phil. Soc. 157 (2) (2014), 189207.CrossRefGoogle Scholar
[20] Pelczynski, A. Banach Spaces of Analytic Functions and Absolutely Summing Operators (American Mathematical Society, Providence, R.I., 1977). Expository lectures from the CBMS Regional Conference held at Kent State University, Kent, Ohio, July 11–16, 1976. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 30.CrossRefGoogle Scholar
[21] Pisier, G. Factorization of operator valued analytic functions. Adv. Math. 93 (1) (1992), 61125.CrossRefGoogle Scholar
[22] Qiu, Y. On the UMD constants for a class of iterated Lp(Lq) spaces. J. Funct. Anal. 263 (8) (2012), 24092429.CrossRefGoogle Scholar
[23] Qiu, Y. Propriété UMD pour les espaces de Banach et d'opérateurs. Thèse de Doctorat. Université Pierre et Marie Curie (2012).Google Scholar
[24] Varopoulos, N. T. The Helson–Szegő theorem and Ap -functions for Brownian motion and several variables. J. Funct. Anal. 39 (1) (1980), 85121.CrossRefGoogle Scholar
[25] Xu, Q. H. Inégalités pour les martingales de Hardy et renormage des espaces quasi-normés. C. R. Acad. Sci. Paris Sér. I Math. 306 (14) (1988), 601604.Google Scholar
[26] Xu, Q. H. Convexités uniformes et inégalités de martingales. Math. Ann. 287 (2) (1990), 193211.Google Scholar