Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54vk6 Total loading time: 0.248 Render date: 2022-08-12T03:37:24.009Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Discussion of Probability Relations between Separated Systems

Published online by Cambridge University Press:  24 October 2008

Extract

The probability relations which can occur between two separated physical systems are discussed, on the assumption that their state is known by a representative in common. The two families of observables, relating to the first and to the second system respectively, are linked by at least one match between two definite members, one of either family. The word match is short for stating that the values of the two observables in question determine each other uniquely and therefore (since the actual labelling is irrelevant) can be taken to be equal. In general there is but one match, but there can be more. If, in addition to the first match, there is a second one between canonical conjugates of the first mates, then there are infinitely many matches, every function of the first canonical pair matching with the same function of the second canonical pair. Thus there is a complete one-to-one correspondence between those two branches (of the two families of observables) which relate to the two degrees of freedom in question. If there are no others, the one-to-one correspondence persists as time advances, but the observables of the first system (say) change their mates in the way that the latter, i.e. the observables of the second system, undergo a certain continuous contact-transformation.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1935

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

* Einstein, A.Podolsky, B. and Rosen, N., Phys. Rev. 47 (1935), 777.CrossRefGoogle Scholar

The whole mathematical treatment is familiar to mathematicians in dealing with an “unsymmetrical kernel” Ψ (x, y). See Courant-Hilbert, , Methoden der mathematischen Physik, 2nd edition, p. 134.Google Scholar

* In order to adapt this proof to the case when the biorthogonal development is not unique, just replace the biorthogonal development by a particular one, on which you fix your attention.

* To make the earlier text conform to the present simplified wording, replace x 2 + x′ by P and p′ − p 2 by X. Then X and P are canonical conjugates. The mating (x with P and p with X) has to be cross-wise, though.

In fact it persists anyhow, but as a rule in a very much more complicated form.

1641
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Discussion of Probability Relations between Separated Systems
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Discussion of Probability Relations between Separated Systems
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Discussion of Probability Relations between Separated Systems
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *