Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-18T14:31:29.231Z Has data issue: false hasContentIssue false

Hamiltonian suspension of perturbed Poincaré sections and an application

Published online by Cambridge University Press:  09 April 2014

MÁRIO BESSA
Affiliation:
Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal. e-mail: bessa@ubi.pt
JOÁO LOPES DIAS
Affiliation:
Universidade Técnica de Lisboa- ISEG, Rua do Quelhas 6, 1200-781 Lisboa, Portugal. e-mail: jldias@iseg.utl.pt

Abstract

We construct a Hamiltonian suspension for a given symplectomorphism which is the perturbation of a Poincaré map. This is especially useful for the conversion of perturbative results between symplectomorphisms and Hamiltonian flows in any dimension 2d. As an application, using known properties of area-preserving maps, we prove that for any Hamiltonian defined on a symplectic 4-manifold M and any point pM, there exists a C2-close Hamiltonian whose regular energy surface through p is either Anosov or contains a homoclinic tangency.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Arroyo, A. and Rodriguez–Hertz, F.. Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 805841.Google Scholar
[2]Bessa, M. and Lopes Dias, J.. Hamiltonian elliptic dynamics on symplectic 4-manifolds. Proc. Amer. Math. Soc. 137 (2009), 585592.CrossRefGoogle Scholar
[3]Bessa, M. and Lopes Dias, J.. Generic dynamics of 4-dimensional C 2 Hamiltonian systems. Comm. Math. Phys. 281 (2008), 597619.CrossRefGoogle Scholar
[4]Bessa, M. and Rocha, J.. Homoclinic tangencies versus uniform hyperbolicity for conservative 3-flows. J. Differential Equation 247 (2009), 29132923.Google Scholar
[5]Bessa, M., Ferreira, C. and Rocha, J.. On the stability of the set of hyperbolic closed orbits of a Hamiltonian. Math. Proc. Camb. Phil. Soc. 149 (2010), 373383.Google Scholar
[6]Channell, P. J.. Hamiltonian suspensions of symplectomorphisms: an alternative approach to design problems. Phys. D 127 (1999), 117130.Google Scholar
[7]Douady, R.. Une démonstration directe de l'équivalence des théorèmes de tores invariants pour difféomorphismes et champs de vecteurs. C. R. Acad. Sc. Paris I 295 (1982), 201204.Google Scholar
[8]Duarte, P.. Abundance of elliptic isles at conservative bifurcations. Dyn. Stab. Syst. 14 (1999), 339356.CrossRefGoogle Scholar
[9]Ferreira, C.. Stability properties of divergence-free vector fields. Dyn. Syst. 27, 2 (2012), 223238.Google Scholar
[10]Gelfreich, V. and Turaev, D.. Universal dynamics in a neighborhood of a generic elliptic periodic point. Regul. Chaotic Dyn. 15 (2010), 159164.CrossRefGoogle Scholar
[11]Mora, L. and Romero, N.. Persistence of homoclinic tangencies for area-preserving maps. Ann. Fac. Sci. Toulouse Math. 6 (1997), 711725.Google Scholar
[12]Morales, C. A., Pacifico, M. J. and Pujals, E. R.. Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann. of Math. 160, 2 (2004), 375432.Google Scholar
[13]Newhouse, S.. Quasi-elliptic periodic points in conservative dynamical systems. Amer. J. Math. 99 (1977), 10611087.CrossRefGoogle Scholar
[14]Palis, J.. A global view of dynamics and a conjecture on the denseness of finitude of attractors. Astérisque 261 (2000), 339351.Google Scholar
[15]Palis, J.. Open questions leading to a global perspective in dynamics. Nonlinearity 21 (2008), T37.Google Scholar
[16]Pujals, E. and Sambarino, M.. Homoclinic tangencies and hyperbolicity for surface diffeomorphisms. Ann. Math. 151, 3 (2000), 9611023.Google Scholar
[17]Takens, F.. Hamiltonian systems: generic properties of closed orbits and local perturbations. Math. Ann. 188 (1970), 304312.Google Scholar
[18]Vivier, T.. Robustly transitive 3-dimensional regular energy surface are Anosov. Institut de Mathématiques de Bourgogne, Dijon, Preprint 412 (2005). http://math.u-bourgogne.fr/topo/prepub/pre05.html.Google Scholar