Hostname: page-component-7d684dbfc8-tvhzr Total loading time: 0 Render date: 2023-09-23T06:43:41.774Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

On l1 subspaces of Orlicz vector-valued function spaces

Published online by Cambridge University Press:  24 October 2008

Fernando Bombal
Universidad Complutense, Madrid, Spain


The purpose of this paper is to characterize the Orlicz vector-valued function spaces containing a copy or a complemented copy of l1. Pisier proved in [13] that if a Banach space E contains no copy of l1, then the space Lp(S, Σ, μ, E) does not contain it either, for 1 < p < ∞. We extend this result to the case of Orlicz vector valued function spaces, by reducing the problem to the situation considered by Pisier. Next, we pass to study the problem of embedding l1 as a complemented subspace of LΦ(E). We obtain a complete characterization when E is a Banach lattice and only partial results in case of a general Banach space. We use here in a crucial way a result of E. Saab and P. Saab concerning the embedding of l1 as a complemented subspace of C(K, E), the Banach space of all the E-valued continuous functions on the compact Hausdorff space K (see [14]). Finally, we use these results to characterize several classes of Banach spaces for which LΦ(E) has some Banach space properties, namely the reciprocal Dunford-Pettis property and Pelczyński's V property.

Research Article
Copyright © Cambridge Philosophical Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



[1]Bombal, F. and Fierro., C.Compacidad débil en espacios de Orlicz de funciones vectoriales. Rev. Acad. Cienc. Madrid, 78 (1984), 157163.Google Scholar
[2]Diestel, J. and Uhl, J. J. Jr, Vector Measures. Math. Surveys no. 15 (American Mathematical Society, 1977).CrossRefGoogle Scholar
[3]Dinculeanu., N.Vector measures (Pergamon Press, 1967).CrossRefGoogle Scholar
[4]Figiel, F., Ghoussoub, N. and Johnson., W. B.On the structure of non-weakly compact operators on Banach lattices. Math. Ann. 257 (1981), 317334.CrossRefGoogle Scholar
[5]Halmos., P. R.Measure theory (Van Nostrand Reinhold, 1969).Google Scholar
[6]Hernández, F. L. and Peirats., V. A remark on vector sequence F-spaces λ(E) containing a copy of lv. To appear.Google Scholar
[7]Kantorovitch, L. and Akilov., G.Analyse fonctionnelle, tome 1 (Mir, Moscow, 1981).Google Scholar
[8]Lindenstrauss, J. and Tzafriri., L.On Orlicz sequence spaces: III. Israel J. Math. 14 (1973), 368384.CrossRefGoogle Scholar
[9]Lindenstrauss, J. and Tzafriri., L.Classical Banach Spaces, vol. i (Springer, 1977).CrossRefGoogle Scholar
[10]Lindenstrauss, J. and Tzafriri., L.Classical Banach Spaces, vol. ii (Springer, 1979).CrossRefGoogle Scholar
[11]Nicolescu., C.Weak compactness in Banach lattices. J. Operator Theory, 6 (1981), 217281.Google Scholar
[12]Pełczyński., A.Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. 12 (1962), 641648.Google Scholar
[13]Pisier., G.Une propriété de stabilité de la classe des eapaces ne contenant pasll. C. R. Acad. Sci. Paris Sér. A 286 (1978), 747749.Google Scholar
[14]Saab, E. and Saab., P.A stability property of a class of Banach spaces not containing a complemented copy of l1. Proc. Amer. Math. Soc. 84 (1982), 4446.Google Scholar
[15]Tzapriri., L.Reflexivity in Banach lattices and their subspaces. J. Funct. Analysis 10 (1972), 118.CrossRefGoogle Scholar
[16]Zaanen., A. C.Linear Analysis (North-Holland, 1953).Google Scholar