Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-s8fcc Total loading time: 0.326 Render date: 2022-12-01T16:46:32.660Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

On Manin's conjecture for singular del Pezzo surfaces of degree four, II

Published online by Cambridge University Press:  01 November 2007

R. DE LA BRETÈCHE
Affiliation:
Institut de Mathématiques de Jussieu, Université Paris 7 Denis Diderot, Case Postale 7012, 2, Place Jussieu, F-75251 Paris cedex 050 email: breteche@math.jussieu.fr
T. D. BROWNING
Affiliation:
School of Mathematics, University of Bristol, Bristol BS81TW. email: t.d.browning@bristol.ac.uk

Abstract

This paper establishes the Manin conjecture for a certain non-split singular del Pezzo surface of degree four . In fact, if UX is the open subset formed by deleting the lines from X, and H is the usual projective height function on , then the height zeta function is analytically continued to the half-plane ℜe(s) > 17/20.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Batyrev, V. V. and Tschinkel, Y.. Manin's conjecture for toric varieties. J. Algebraic Geom. 7 (1998), 1553.Google Scholar
[2]Bretèche, R. de la and Browning, T.D.. On Manin's conjecture for singular del Pezzo surfaces of degree four, I. Michigan Math. J. 55 (2007), 5180.CrossRefGoogle Scholar
[3]Browning, T. D.. An overview of Manin's conjecture for del Pezzo surfaces. Gauss–Dirichlet conference (Göttingen 2005), CMI conference proceedings, AMS, to appear.Google Scholar
[4]Chambert-Loir, A. and Tschinkel, Y.. On the distribution of points of bounded height on equivariant compactifications of vector groups. Invent. Math. 148 (2002), 421452.CrossRefGoogle Scholar
[5]Coray, D. F. and Tsfasman, M. A.. Arithmetic on singular Del Pezzo surfaces. Proc. London Math. Soc. 57 (1988), 2587.CrossRefGoogle Scholar
[6]Derenthal, U. and Tschinkel, Y.. Universal torsors over del Pezzo surfaces and rational points. Equidistribution in Number Theory: An Introduction (Montreal, 2005), 169–196, NATO Science Series II: Math, Physics and Chemistry 237, Springer, 2006.Google Scholar
[7]Franke, J., Manin, Y. I. and Tschinkel, Y.. Rational points of bounded height on Fano varieties. Invent. Math. 95 (1989), 421435.CrossRefGoogle Scholar
[8]Heath-Brown, D. R.. Mean values of the zeta-function and divisor problems. Recent progress in analytic number theory, Vol. I, 115119, Academic Press, 1981.Google Scholar
[9]Heath-Brown, D. R.. Weyl's inequality, Hua's inequality and Waring's problem. J. London Math. Soc. 38 (1988), 2, 216230.CrossRefGoogle Scholar
[10]Hassett, B. and Tschinkel, Y.. Universal torsors and Cox rings. Arithmetic of higher-dimensional algebraic varieties (Palo Alto, 2002), 149–173, Progr. Math. 226, Birkhäuser, 2004.Google Scholar
[11]Hodge, W. V. D. and Pedoe, D.. Methods of algebraic geometry. Vol. 2, Cambridge University Press, 1952.Google Scholar
[12]Lipman, J.. Rational singularities, with applications to algebraic surfaces and unique factorization. Inst. Hautes études Sci. Publ. Math. 36 (1969), 195279.CrossRefGoogle Scholar
[13]Montgomery, H. L. Topics in multiplicative number theory. Springer Lecture Notes 227, Springer, 1971.CrossRefGoogle Scholar
[14]Peyre, E.. Hauteurs et mesures de Tamagawa sur les variétés de Fano. Duke Math. J. 79 (1995), 101218.CrossRefGoogle Scholar
[15]Swinnerton-Dyer, P.. Counting points on cubic surfaces, II. Geometric methods in algebra and number theory, 303310, Progr. Math. 235, Birkhäuser, 2005.CrossRefGoogle Scholar
[16]Titchmarsh, E. C.. The theory of the Riemann zeta-function. 2nd ed., edited by Heath-Brown, D.R., Oxford University Press, 1986.Google Scholar
[17]Vaaler, J. D.. Some extremal functions in Fourier analysis. Bull. Amer. Math. Soc. 12 (1985), 2, 183216.CrossRefGoogle Scholar
7
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On Manin's conjecture for singular del Pezzo surfaces of degree four, II
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

On Manin's conjecture for singular del Pezzo surfaces of degree four, II
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

On Manin's conjecture for singular del Pezzo surfaces of degree four, II
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *