Hostname: page-component-5d59c44645-mhl4m Total loading time: 0 Render date: 2024-02-25T04:51:32.960Z Has data issue: false hasContentIssue false

A pointwise ergodic theorem for Fuchsian groups

Published online by Cambridge University Press:  27 April 2011

ALEXANDER I. BUFETOV
Affiliation:
The Steklov Institute of Mathematics, Russian Academy of Sciences, Gubkina Str. 8, 119991, Moscow, Russia. e-mail: aib1@rice.edu
CAROLINE SERIES
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL. e-mail: C.M.Series@warwick.ac.uk

Abstract

We use Series' Markovian coding for words in Fuchsian groups and the Bowen-Series coding of limit sets to prove an ergodic theorem for Cesàro averages of spherical averages in a Fuchsian group.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Anantharaman, C. et al. Théorèmes ergodiques pour les actions de groupes. Monographie 41 de L' Enseignment Mathématique (Genève, 2010).Google Scholar
[2]Beardon, A. An introduction to hyperbolic geometry. Ergodic Theory and Symbolic Dynamics in Hyperbolic Spaces, Bedford, T., Keane, M. and Series, C. eds. (Oxford University Press, 1991).Google Scholar
[3]Birman, J. and Series, C. Dehn's algorithm revisited, with application to simple curves on surfaces. Combinatorial Group Theory and Topology, Gersten, S. and Stallings, J. eds. Ann. of Math. Studies III (Princeton University Press, 1987), 451478.Google Scholar
[4]Bowen, L.Invariant measures on the space of horofunctions of a word hyperbolic group. Ergodic Theory Dynam. Syst. 30 (2010), 97129.Google Scholar
[5]Bowen, R. and Series, C.Markov maps associated with Fuchsian groups. Inst. Hautes Études Sci. Pubi. Math. 50 (1979), 153170.Google Scholar
[6]Bufetov, A. I.Convergence of spherical averages for actions of free groups. Ann. of Math. (2), 155 (2002), 929944.Google Scholar
[7]Bufetov, A. I.Markov averaging and ergodic theorems for several operators. Topology, ergodic theory, real algebraic geometry, 3950, Amer. Math. Soc. Transl. Ser. 2 202 (Amer. Math. Soc., 2001).Google Scholar
[8]Fujiwara, K. and Nevo, A.Maximal and pointwise ergodic theorems for word-hyperbolic groups. Ergodic Theory Dynam. Syst. 18 (1998), 843858.Google Scholar
[9]Gorodnik, A. and Nevo, A.The ergodic theory of lattice subgroups. Ann. of Math. Stud. 172 (Princeton University Press, 2010).Google Scholar
[10]Grigorchuk, R. I.Ergodic theorems for the actions of a free group and a free semigroup. (Russian) Mat. Zametki 65 (1999), 779783 (English trans: Math. Notes 65 (1999), 654–657).Google Scholar
[11]Grigorchuk, R. I.An ergodic theorem for actions of a free semigroup. (Russian) Tr. Mat. Inst. Steklova 231 (2000), Din. Sist., Avtom. i Beskon. Gruppy, 119133 (English trans: Proc. Steklov Inst. Math. 2000 231, 113–127).Google Scholar
[12]Margulis, G. A., Nevo, A. and Stein, E. M.Analogs of Wiener's ergodic theorems for semisimple Lie groups. II. Duke Math. J. 103 (2000), 233259.Google Scholar
[13]Nevo, A.Harmonic analysis and pointwise ergodic theorems for noncommuting transformations. J. Amer. Math. Soc. 7 (1994), 875902.Google Scholar
[14]Nevo, A. Pointwise ergodic theorems for actions of groups. Handbook of dynamical systems. Vol. 1B, 871982 (Elsevier, Amsterdam, 2006).Google Scholar
[15]Nevo, A. and Stein, E. M.A generalization of Birkhoff's pointwise ergodic theorem. Acta Math. 173 (1994), 135154.Google Scholar
[16]Nevo, A. and Stein, E. M.Analogs of Wiener's ergodic theorems for semisimple groups. I. Ann. of Math. 2 145 (1997), 565595.Google Scholar
[17]Series, C.The infinite word problem and limit sets in Fuchsian groups. Ergodic Theory Dynam. Syst. 1 (1981), 337360.Google Scholar
[18]Series, C.Martin boundaries of random walks on Fuchsian groups. Israel J. Math. 44 (1983), 221240.Google Scholar
[19]Series, C.Geometrical Markov coding of geodesics on surfaces of constant negative curvature. Ergodic Theory Dynam. Syst. 6 (1986), 601625.Google Scholar
[20]Series, C. Geometrical methods of symbolic coding. Ergodic Theory and Symbolic Dynamics in Hyperbolic Spaces, Bedford, T., Keane, M. and Series, C. eds. (Oxford University Press, 1991).Google Scholar