Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-vl2kb Total loading time: 0.213 Render date: 2021-12-04T17:58:47.056Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Traces, high powers and one level density for families of curves over finite fields

Published online by Cambridge University Press:  31 July 2017

ALINA BUCUR
Affiliation:
Department of Mathematics, University of California, San Diego, 9500 Gilman Drive #0112, La Jolla, CA 92093, U.S.A. e-mail: alina@math.ucsd.edu
EDGAR COSTA
Affiliation:
Department of Mathematics, Dartmouth College, 27 N Main Street, 6188 Kemeny Hall, Hanover, NH 03755-3551, U.S.A. e-mail: edgarcosta@math.dartmouth.edu
CHANTAL DAVID
Affiliation:
Concordia University, 1455 de Maisonneuve West, Montréal, Quebec, CanadaH3G 1M8. e-mail: cdavid@mathstat.concordia.ca
JOÃO GUERREIRO
Affiliation:
Max–Planck–Institut für Mathematik, Vivatsgasse 7, 53111, Bonn, Germany. e-mail: guerreiro@mpim-bonn.mpg.de
DAVID LOWRY–DUDA
Affiliation:
Department of Mathematics, Brown University, 151 Thayer Street, Box 1917, Providence, RI 02912, U.S.A. e-mail: djlowry@math.brown.edu

Abstract

The zeta function of a curve C over a finite field may be expressed in terms of the characteristic polynomial of a unitary matrix ΘC. We develop and present a new technique to compute the expected value of tr(ΘCn) for various moduli spaces of curves of genus g over a fixed finite field in the limit as g is large, generalising and extending the work of Rudnick [Rud10] and Chinis [Chi16]. This is achieved by using function field zeta functions, explicit formulae, and the densities of prime polynomials with prescribed ramification types at certain places as given in [BDF+16] and [Zha]. We extend [BDF+16] by describing explicit dependence on the place and give an explicit proof of the Lindelöf bound for function field Dirichlet L-functions L(1/2 + it, χ). As applications, we compute the one-level density for hyperelliptic curves, cyclic ℓ-covers, and cubic non-Galois covers.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AT14] Altuğ, S. A. and Tsimerman, J. Metaplectic Ramanujan conjecture over function fields with applications to quadratic forms. Int. Math. Res. Not. IMRN 13 (2014), 34653558.Google Scholar
[BDF+16] Bucur, A., David, C., Feigon, B., Kaplan, N., Lalín, M., Ozman, E. and Wood, M. The distribution of 𝔽q-points on cyclic ℓ-covers of genus g. Int. Math. Res. Not. IMRN 14: (2016), 42974340.CrossRefGoogle Scholar
[BF16] Bui, H. M. and Florea, A. Zeros of quadratic Dirichlet L-functions in the hyperelliptic ensemble. Preprint (2016). arXiv:1605.07092.Google Scholar
[BG01] Brock, B. W. and Granville, A. More points than expected on curves over finite field extensions. Finite Fields Appl. 7 (1): (2001), 7091. Dedicated to Professor Chao Ko on the occasion of his 90th birthday.CrossRefGoogle Scholar
[CC11] Carneiro, E. and Chandee, V. Bounding ζ(s) in the critical strip. J. Number Theory 131 (3) (2011), 363384.CrossRefGoogle Scholar
[Chi16] Chinis, I. J. Traces of high powers of the Frobenius class in the moduli space of hyperelliptic curves. Res. Number Theory 2:Art. 13, 18 (2016).CrossRefGoogle Scholar
[CS11] Chandee, V. and Soundararajan, K. Bounding $\vert \zeta(\frac12+it)\vert $ on the Riemann hypothesis. Bull. Lond. Math. Soc. 43 (2) (2011), 243250.CrossRefGoogle Scholar
[CV10] Carneiro, E. and Vaaler, J. D. Some extremal functions in Fourier analysis. II. Trans. Amer. Math. Soc. 362 (11) (2010), 58035843.CrossRefGoogle Scholar
[DS94] Diaconis, P. and Shahshahani, M. On the eigenvalues of random matrices. J. Appl. Probab. 31A: (1994), 4962. Studies in applied probability.CrossRefGoogle Scholar
[DW88] Datskovsky, B. and Wright, D. J. Density of discriminants of cubic extensions. J. Reine Angew. Math. 386 (1988), 116138.Google Scholar
[Flo16] Florea, A. The fourth moments of quadratic Dirichlet L-functions over function fields. Preprint (2016), arXiv:1609.01262.Google Scholar
[FPS16] Fiorilli, D., Parks, J. and Södergren, A. Low-lying zeros of quadratic Dirichlet L-functions: Lower order terms for extended support. Preprint (2016), arXiv:1601.06833.Google Scholar
[FR10] Faifman, D. and Rudnick, Z. Statistics of the zeros of zeta functions in families of hyperelliptic curves over a finite field. Compos. Math. 146 (1) (2010), 81101.CrossRefGoogle Scholar
[Kat01] Katz, N. M. Frobenius-Schur indicator and the ubiquity of Brock-Granville quadratic excess. Finite Fields Appl. 7 (1) (2001), 4569. Dedicated to Professor Chao Ko on the occasion of his 90th birthday.CrossRefGoogle Scholar
[KR09] Kurlberg, P. and Rudnick, Z. The fluctuations in the number of points on a hyperelliptic curve over a finite field. J. Number Theory 129 (3) (2009), 580587.CrossRefGoogle Scholar
[KS99] Katz, N. M. and Sarnak, P. Random matrices, Frobenius eigenvalues, and monodromy. American Mathematical Society Colloquium Publications. vol. 45 American Mathematical Society, Providence, RI, 1999.Google Scholar
[Ros02] Rosen, M. Number theory in function fields, Graduate Texts in Mathematics. vol. 210 (Springer-Verlag, New York, 2002).CrossRefGoogle Scholar
[Rud10] Rudnick, Z. Traces of high powers of the Frobenius class in the hyperelliptic ensemble. Acta Arith. 143 (1) (2010), 8199.CrossRefGoogle Scholar
[TX14] Thorne, F. and Xiong, M. Distribution of zeta zeroes for cyclic trigonal curves over a finite field. Preprint (2014).Google Scholar
[Yan09] Yang, A. Distribution problems associated to zeta functions and invariant theory. PhD. Thesis Princeton University (2009).Google Scholar
[Zha] Zhao, Y. On sieve methods for varieties over finite fields. Preprint.Google Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Traces, high powers and one level density for families of curves over finite fields
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Traces, high powers and one level density for families of curves over finite fields
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Traces, high powers and one level density for families of curves over finite fields
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *