Skip to main content Accesibility Help

Algebraic and Heegaard–Floer invariants of knots with slice Bing doubles


If the Bing double of a knot K is slice, then K is algebraically slice. In addition the Heegaard–Floer concordance invariants τ, developed by Ozsváth–Szabó, and δ, developed by Manolescu and Owens, vanish on K.

Hide All
[1]Beliakova, A. and Wehrli, A.. Categorification of the colored Jones polynomial and Rasmussen invariant of links,
[2]Cha, J. C. Link concordance, homology cobordism, and Hirzebruch-type intersection form defects from towers of iterated p-covers, arxiv:0705.0088.
[3]Cha, J. C.The structure of the rational concordance group of knots. Mem. Amer. Math. Soc. 189 (2007), no.885.
[4]Cha, J. C. and Ko, K. H.. Signature invariants of covering links. Trans. Amer. Math. Soc. 358 (2006), 33993412.
[5]Cochran, T. and Orr, K.. Not all links are concordant to boundary links. Ann. of Math. (2) 138 (1993), 519554.
[6]Cimasoni, D.Slicing Bing doubles. Alg. Geom. Topol. 6 (2006) 23952415,
[7]Habiro, K.Claspers and finite type invariants of links. Geom. Topol. 4 (2000), 183.
[8]Harvey, S. Homology cobordism invariants and the Cochran-Orr-Teichner filtration of the link concordance group,
[9]Harvey, S. New phenomena in knot and link concordance (joint work with Tim Cochran and Constance Leidy); Oberwolfach Reports 3, to appear,
[10]Kawauchi, A.On links not cobordant to split links. Topology 19 (1980), 321334.
[11]Kearton, C.The Milnor signatures of compound knots. Proc. Amer. Math. Soc. 76 (1979), 157160.
[12]Krushkal, V.Exponential separation in 4-manifolds. Geom. Topol. 4 (2000), 397405.
[13]Krushkal, V.On the relative slice problem and four-dimensional topological surgery. Math. Ann. 315 (1999), 363396.
[14]Krushkal, V.A counterexample to the strong version of Freedman's conjecture, GT/0610865.
[15]Krushkal, V. and Teichner, P.. Alexander duality, gropes and link homotopy. Geom. Topol. 1 (1997), 5169.
[16]Levine, J.Knot cobordism groups in codimension two. Comment. Math. Helv. 44 (1969) 229244.
[17]Levine, J.Invariants of knot cobordism. Invent. Math. 8 (1969), 98110.
[18]Livingston, C.Computations of the Ozsváth–Szabó knot concordance invariant. Geom. Topol. 8 (2004), 735742.
[19]Livingston, C. and Melvin, P. Abelian invariants of satellite knots, geometry and topology (College Park, Md., 1983/84). 217–227. Lecture Notes in Math. 1167 (Springer, 1985).
[20]Manolescu, C. and Owens, B.. A concordance invariant from the Floer homology of double branched covers,
[21]Ozsváth, P. and Szabó, Z.. Knot Floer homology and the four-ball genus. Geom. Topol. 7 (2003), 615639.
[22]Rasmussen, J. A. Khovanov homology and the slice genus. To appear in Invent. Math.,
[23]Schneiderman, R. and Teichner, P.. Whitney towers and the Kontsevich integral. Proceedings of the Casson Fest Geom. Topol. Monogr. 7 (2004) 101134.
[24]Seifert, H.On the homology invariants of knots. Quart. J. Math. Oxford Ser. (2) 1 (1950), 2332.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed