Skip to main content Accessibility help
×
Home

An asymptotic for the average number of amicable pairs for elliptic curves

  • JAMES PARKS (a1)

Abstract

Amicable pairs for a fixed elliptic curve defined over ℚ were first considered by Silverman and Stange where they conjectured an order of magnitude for the function that counts such amicable pairs. This was later refined by Jones to give a precise asymptotic constant. The author previously proved an upper bound for the average number of amicable pairs over the family of all elliptic curves. In this paper we improve this result to an asymptotic for the average number of amicable pairs for a family of elliptic curves.

Copyright

Footnotes

Hide All

with an appendix by Sumit Giri

Present address: Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany e-mail: james.william.a.parks@gmail.com

This work was supported by a Pacific Institute for the Mathematical Sciences Postdoctoral Fellowship.

Footnotes

References

Hide All
[CDKS] Chandee, V., David, C., Koukoulopoulos, D. and Smith, E. The frequency of elliptic curves over prime finite fields. Canad. J. Math. 68 (2016), no. 4, 721761.
[Da] Davenport, H. Multiplicative Number Theory. Third edition. Revised and with a preface by Montgomery, Hugh L. Graduate Texts in Mathematics, 74 (Springer–Verlag, New York, 2000).
[DKS] David, C., Koukoulopoulos, D. and Smith, E. Sums of Euler products and statistics of elliptic curves. Math. Ann. 368 (2017), no. 1–2, 685752.
[DP] David, C. and Pappalardi, F. Average Frobenius distributions of elliptic curves. Internat. Math. Res. Notices (1999), no. 4, 165183.
[DS1] David, C. and Smith, E. Elliptic curves with a given number of points over finite fields. Compositio Math. 149 (2013), no. 2, 175203.
[DS2] David, C. and Smith, E. Corrigendum to: Elliptic curves with a given number of points over finite fields. Compositio Math. 150 (2014), no. 8, 13471348.
[De] Deuring, M. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Univ. Hamburg, 14 (1941), no. 1, 197272.
[E] Elliott, P. On the size of L(1, χ), J. Reine Angew. Math. 236 (1969), 2636.
[FM] Fouvry, E. and Murty, M. R. On the distribution of supersingular primes. Canad. J. Math. 48 (1996), no. 1, 81104.
[G] Gekeler, E. Frobenius distributions of elliptic curves over finite prime fields. Int. Math. Res. Not. (2003), no. 37, 19992018.
[GS] Granville, A. and Soundararajan, K. The distribution of values of L(1, χd). Geom. Funct. Anal. 13 (2003), no. 5, 9921028.
[J] Jones, N. Elliptic aliquot cycles of fixed length. Pacific J. Math. 263 (2013), no. 2, 353371.
[K] Koukoulopoulos, D. Primes in short arithmetic progressions. Int. J. Number Theory 11 (2015), no. 5, 14991521.
[LT] Lang, S. and Trotter, H. Frobenius distributions in GL2-extensions. Lecture Notes in Math. vol. 504 (Springer–Verlag, Berlin–New York, 1976).
[L] Lenstra, H. Factoring integers with elliptic curves. Ann. of Math. (2) 126 (1987), no. 3, 649673.
[P] Parks, J. Amicable pairs and aliquot cycles on average. Int. J. Number Theory 11 (2015), no. 6, 17511790.
[Se] Serre, J-P. Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259331.
[Si] Silverman, J. The arithmetic of elliptic curves. Graduate Texts in Math., 106, (Springer–Verlag, New York, 1986).
[SS] Silverman, J. and Stange, K. Amicable pairs and aliquot cycles for elliptic curves. Exp. Math. 20 (2011), no. 3, 329357.
[Sm] Smyth, C. The terms in Lucas sequences divisible by their indices. J. Integer Seq. 13 (2010), no. 2, Article 10.2.4, 18 pp.

An asymptotic for the average number of amicable pairs for elliptic curves

  • JAMES PARKS (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed