[AH12]
Ando, H. and Haagerup, U.
Ultraproducts of von Neumann algebras. J. Funct. Anal.
266 (2014), 6842–6913.

[BC14]
Boutonnet, R. and Carderi, A.
Maximal amenable von Neumann subalgebras arising from maximal amenable subgroups. Geom. Funct. Anal.
25 (2015), 1688–1705.

[BHR12]
Boutonnet, R., Houdayer, C. and Raum, S.
Amalgamated free product type III factors with at most one Cartan subalgebra. Compositio Math.
150 (2014), 143–174.

[Bl06]
Blackadar, B.
Operator Algebras. Encyclopaedia of Mathematical Sciences, **122**. Operator Algebras and Non-commutative Geometry 3. (Springer-Verlag, Berlin, 2006), xx+517 pp.

[CH08]
Chifan, I. and Houdayer, C.
Bass–Serre rigidity results in von Neumann algebras. Duke Math. J.
153 (2010), 23–54.

[Co72]
Connes, A.
Une classification des facteurs de type III. Ann. Sci. École Norm. Sup.
6 (1973), 133–252.

[Co75]
Connes, A.
Classification of injective factors. Cases II_{1}, II_{∞}, III_{λ}, λ
1. Ann. of Math.
74 (1976), 73–115.
[Co76]
Connes, A.
On the cohomology of operator algebras. J. Funct. Anal.
28 (1978), 248–253.

[CS78]
Connes, A. and Størmer, E.
Homogeneity of the state space of factors of type III_{1}
. J. Funct. Anal.
28 (1978), 187–196.

[FM75]
Feldman, J. and Moore, C.C.
Ergodic equivalence relations, cohomology and von Neumann algebras. I and II. Trans. Amer. Math. Soc.
234 (1977), 289–324, 325–359.

[Ha85]
Haagerup, U.
Connes' bicentralizer problem and uniqueness of the injective factor of type III_{1}
. Acta Math.
69 (1986), 95–148.

[HS90]
Haagerup, U. and Størmer, E.
Equivalence of normal states on von Neumann algebras and the flow of weights. Adv. Math.
83 (1990), 180–262.

[Ho12a]
Houdayer, C.
A class of II_{1} factors with an exotic abelian maximal amenable subalgebra. Trans. Amer. Math. Soc.
366 (2014), 3693–3707.

[Ho12b]
Houdayer, C.
Structure of II_{1} factors arising from free Bogoljubov actions of arbitrary groups. Adv. Math.
260 (2014), 414–457.

[Ho14]
Houdayer, C.
Gamma stability in free product von Neumann algebras. Commun. Math. Phys.
336 (2015), 831–851.

[HI15]
Houdayer, C. and Isono, Y. Unique prime factorization and bicentralizer problem for a class of type III factors. arXiv:1503.01388

[HR14]
Houdayer, C. and Raum, S.
Asymptotic structure of free Araki–Woods factors. Math. Ann.
363 (2015), 237–267.

[HR10]
Houdayer, C. and Ricard, É.. Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors. Adv. Math.
228 (2011), 764–802.

[HU15]
Houdayer, C. and Ueda, Y.,. Rigidity of free product von Neumann algebra. To appear in *Compositio Math.*
arXiv:1507.02157

[HV12]
Houdayer, C. and Vaes, S.
Type III factors with unique Cartan decomposition. J. Math. Pure Appl.
100 (2013), 564–590.

[Io12]
Ioana, A.
Cartan subalgebras of amalgamated free product II_{1} factors. Ann. Sci. École Norm. Sup.
48 (2015), 71–130.

[IPP05]
Ioana, A., Peterson, J. and Popa, S.
Amalgamated free products of *w*-rigid factors and calculation of their symmetry groups. Acta Math.
200 (2008), 85–153.

[Jo82]
Jones, V.F.R.
Index for subfactors. Invent. Math.
72 (1983), 1–25.

[Ka82]
Kadison, R.V.
Diagonalizing matrices. Amer. J. Math.
106 (1984), 1451–1468.

[Ko88]
Kosaki, H.
Characterization of crossed product (properly infinite case). Pacific J. Math.
137 (1989), 159–167.

[Kr75]
Krieger, W.
On ergodic flows and the isomorphism of factors. Math. Ann.
223 (1976),19–70.

[MU12]
Martín, M. and Ueda, Y.
On the geometry of von Neumann algebra preduals. Positivity
18 (2014), 519–530.

[MT13]
Masuda, T. and Tomatsu, R. Classification of actions of discrete Kac algebras on injective factors. To appear in *Mem. Amer. Math. Soc.*
arXiv:1306.5046

[Oc85]
Ocneanu, A.
Actions of discrete amenable groups on von Neumann algebras. Lecture Notes in Mathematics, **1138** (Springer-Verlag, Berlin, 1985), iv+115 pp.

[Oz15]
Ozawa, N.
A remark on amenable von Neumann subalgebras in a tracial free product. Proc. Japan Acad. Ser. A Math. Sci.
91 (2015), 104.

[Pe06]
Peterson, J.
L^{2}-rigidity in von Neumann algebras. Invent. Math.
175 (2009), 417–433.

[PP84]
Pimsner, M. and Popa, S.
Entropy and index for subfactors. Ann. Sci. École Norm. Sup.
19 (1986), 57–106.

[Po83]
Popa, S.
Maximal injective subalgebras in factors associated with free groups. Adv. Math.
50 (1983), 27–48.

[Po90]
Popa, S.
Markov traces on universal Jones algebras and subfactors of finite index. Invent. Math.
111 (1993), 375–405.

[Po01]
Popa, S.
On a class of type II_{1} factors with Betti numbers invariants. Ann. of Math.
163 (2006), 809–899.

[Po03]
Popa, S.
Strong rigidity of II_{1} factors arising from malleable actions of w-rigid groups I. Invent. Math.
165 (2006), 369–408.

[Po06]
Popa, S.
On the superrigidity of malleable actions with spectral gap. J. Amer. Math. Soc.
21 (2008), 981–1000.

[Ta02]
Takesaki, M.
Theory of Operator Algebras. I. Encyclopedia of Mathematical Sciences, **124**. Operator Algebras and Non-commutative Geometry, 5 (Springer, Berlin, 2002), xx+415 pp.

[Ta03]
Takesaki, M.
Theory of operator algebras. II. Encyclopaedia of Mathematical Sciences, **125**. Operator Algebras and Non-commutative Geometry, 6 (Springer-Verlag, Berlin, 2003), xxii+518 pp.

[Ue98a]
Ueda, Y.
Amalgamated free products over Cartan subalgebra. Pacific J. Math.
191 (1999), 359–392.

[Ue98b]
Ueda, Y.
Remarks on free products with respect to non-tracial states. Math. Scand.
88 (2001), 111–125.

[Ue00]
Ueda, Y.
Fullness, Connes' χ-groups, and ultra-products of amalgamated free products over Cartan subalgebras. Trans. Amer. Math. Soc.
355 (2003), 349–371.

[Ue10]
Ueda, Y.
Factoriality, type classification and fullness for free product von Neumann algebras. Adv. Math.
228 (2011), 2647–2671.

[Ue11]
Ueda, Y.
On type III_{1} factors arising as free products. Math. Res. Lett.
18 (2011), 909–920.

[Ue12]
Ueda, Y.
Some analysis on amalgamated free products of von Neumann algebras in non-tracial setting. J. London Math. Soc.
88 (2013), 25–48.

[Va06]
Vaes, S.
Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa). Astérisque
311 (2007), 237–294.

[Va07]
Vaes, S.
Explicit computations of all finite index bimodules for a family of II_{1} factors. Ann. Sci. École Norm. Sup.
41 (2008), 743–788.

[Vo85]
Voiculescu, D.-V.. Symmetries of some reduced free product C*-algebras. Operator algebras and their Connections with Topology and Ergodic Theory. Lecture Notes in Mathematics **1132** (Springer-Verlag, 1985), 556–588.

[VDN92]
Voiculescu, D.-V., Dykema, K.J. and Nica, A.. Free random variables. CRM Monograph Series **1** (American Mathematical Society, Providence, RI, 1992).