Skip to main content Accesibility Help
×
×
Home

The A-T-menability of some graphs of groups with cyclic edge groups

  • MATHIEU CARETTE (a1), DANIEL T. WISE (a1) and DANIEL J. WOODHOUSE (a1)
Abstract

We show that certain graphs of groups with cyclic edge groups are aTmenable. In particular, this holds when each vertex group is either virtually special or acts properly and semisimply on ℍ n .

Copyright
References
Hide All
[Car14] Carette, M. The haagerup property is not invariant under quasi-isometry. With an appendix by Sylvain Arnt, Thibault Pillon, Alain Valette. Preprint, http://arxiv.org/abs/1403.5446, 2014.
[CCJ+01] Cherix, P.-A., Cowling, M., Jolissaint, P., Julg, P. and Valette, A. Groups with the Haagerup property. Progr. Math., vol. 197 (Birkhäuser Verlag, Basel, 2001). Gromov's a-T-menability.
[CDH10] Chatterji, I., Druţu, C. and Haglund, F. Kazhdan and Haagerup properties from the median viewpoint. Adv. Math. 225 (2) (2010), 882921.
[CMV04] Cherix, P.-A., Martin, F. and Valette, A. Spaces with measured walls, the Haagerup property and property (T). Ergodic Theory Dynam. Systems 24 (6) (2004), 18951908.
[dlR93] de la Rue, T. Espaces de Lebesgue. In Séminaire de Probabilités, XXVII. Lecture Notes in Math., vol. 1557 (Springer, Berlin, 1993), 1521.
[Gro93] Gromov, M. Asymptotic invariants of infinite groups. In Geometric Group Theory 2 (Sussex, 1991) (Cambridge University Press, Cambridge, 1993), 1295.
[Hag06] Haglund, F. Commensurability and separability of quasiconvex subgroups. Algebr. Geom. Topol. 6 (electronic), (2006), 9491024.
[HW08] Haglund, F. and Wise, D. T. Special cube complexes. Geom. Funct. Anal. 17 (5) (2008), 15511620.
[Jol00] Jolissaint, P. Borel cocycles, approximation properties and relative property T. Ergodic Theory Dynam. Systems 20 (2) (2000), 483499.
[Rob98] Robertson, G. Crofton formulae and geodesic distance in hyperbolic spaces. J. Lie Theory. 8 (1) (1998), 163172.
[SW15] Sageev, M. and Wise, D. T. Cores for quasiconvex actions. Proc. Amer. Math. Soc. 143 (7) (2015), 27312741.
[WW15] Wise, D. T. and Woodhouse, D. J. A cubical flat torus theorem and the bounded packing property. Israel J. Math. (To appear), 1–19.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed