Skip to main content Accessibility help

Certain fractional q-integrals and q-derivatives

  • R. P. Agarwal (a1)

In a recent paper Al-Salam(1) has denned a fractional q-integral operator by the basic integral

(1) Where α ≠ 0, −1, −2, …. Using the series definition of the basic integrals, (1·1) is written as

valid for all α

Hide All
(1)Al-Salam, W. A.Some fractional q-integrals and q-derivatives. Proc. Edinburgh Math. Soc. 15 (1966), 135140.
(2)Erdelyi, A.On some functional transformations. Univ. e Politecnico Torino Rend. Sem. Mat. 10 (1951), 217234.
(3)Hahn, W.Beiträge zur theorie der Heineschen Reihen Math. Nachr. 2 (1949), 340–79.
(4)Hahn, W.Über die höheren Heinschen reihen und eine einheitliche theorie der sogenannten speziellen funktionen. Math. Nachr. 3 (1950), 257294.
(5)Kober, H.On fractional integrals and derivatives. Quart. J. Math. Oxford Ser. 11 (1940), 193–21.
(6)Slater, L.J. Generalized Hypergeometric Functions. Cambridge University Press (1966).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed