Skip to main content
×
Home
    • Aa
    • Aa

Continuity of the generalized kernel and range of semi-Fredholm operators

  • M. Ó Searcóid (a1) and T. T. West (a2)
Abstract

Let X denote a Banach space over the complex field ℂ and let B(X) be the Banach algebra of all bounded linear operators on X. If T ε B(X), we write n(T) = dim ker (T) and d(T) = codim T(X). Suppose that Y is a subspace invariant under T; then TY will denote the restriction of T to Y and Y the operator on X/Y defined by

Y: x/Y →(Tx)/Y

Copyright
References
Hide All
[1] Aupetit B. and Zemánek J.. Uniformly regular families of commuting operators. (To appear.)
[2] Goldman M. A. and Kračkovskiǐ S. N.. Invariance of certain subspaces associated with the operator A — λI (Russian). Dokl. Akad. Nauk SSSR 154 (1964), 500502.
[3] Homer R. H.. Regular extensions and the solvability of operator equations. Proc. Amer. Math. Soc. 12 (1961), 415418.
[4] Kaashoek M. A.. Stability theorems for closed linear operators. Indag. Math. 27 (1965), 452466.
[5] Kato T.. Perturbation Theory for Linear Operators (Springer-Verlag, 1966).
[6] Livčak A. Ja. Operators with finite-dimensional salient of zeros on the Riesz kernel: duality and non-commuting perturbations (Russian). VINITI, Voronezh (1983) RZh Mat. 6B (1983), 692.
[7] Saphar P.. Contributions à l'étude des applications linéaires dans un espace de Banach. Bull. Soc. Math. France 92 (1964), 363384.
[8] West T. T.. A Riesz-Schauder theorem for semi-Fredholm operators. Proc. Roy. Irish Acad. Sect. A 87 (1987), 137146.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 3 *
Loading metrics...

Abstract views

Total abstract views: 75 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.