Home

# Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions: II. The order of the Fourier coefficients of integral modular forms

Extract

Suppose that

is an integral modular form of dimensions −κ, where κ > 0, and Stufe N, which vanishes at all the rational cusps of the fundamental region, and which is absolutely convergent for Then

where a, b, c, d are integers such that ad − bc = 1.

References
Hide All

* Cf. for example, Klein, F. and Fricke, R., Elliptische Modulfunktionen, 1 (Leipzig, 1890), 395–7.

* Salié, H., “Zur Abschätzung der Fourierkoeffizienten ganzer Modulformen”, Math. Z. 36 (1931), 263–78.

Davenport, H., “On certain exponential sums”, J. reine angew. Math. 169 (1932), 158–76.

Hauptkongruenzgruppe.

* Cf. Landau, E., Primzahlen, 1 (Leipzig, 1909), 483–92.

This may be proved in several ways; cf., for example Hecke, E., “Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung I”, Math. Ann. 114 (1937), 128 (Satz 5).

* Cf. for example E. Hecke, loc. cit., Satz 7.

By the Wiener-Ikehara theorem we can deduce at once from Theorem 3 that

See Bochner, S., “Ein Satz von Landau und Ikehara”, Math. Z. 37 (1933), 19.

Landau, E., “Über die Anzahl der Gitterpunkte in gewissen Bereichen. II”, Nachr. Ges. Wiss. Göttingen (1915), pp. 209–43.

* | αγ, δ (n)| is not dependent on α, β.

When (m, n)>1, (m, n, N) = 1, we denote by f m n (s) the function f γ,δ(s), where γ ≡ m, δ ≡ n (mod N), (γ, δ) = 1.

* This is trivial when It is true also for since Landau's theorem can be extended to show that

for any real α > − β, where R(a, x) is the sum of the residues of in the strip

I write k′ where Landau has k to avoid confusion with the dimension − k.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
• ISSN: 0305-0041
• EISSN: 1469-8064
• URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Who would you like to send this to? *

×

## Full text viewsFull text views reflects the number of PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 0 *

## Abstract viewsAbstract views reflect the number of visits to the article landing page.

Total abstract views: 0 *

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed