Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 78
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Cao, Xiaodong Tanigawa, Yoshio and Zhai, Wenguang 2016. On the mean square of an arithmetical error term of the Selberg class in short intervals. International Journal of Number Theory, Vol. 12, Issue. 06, p. 1675.


    Lao, Huixue McKee, Mark and Ye, Yangbo 2016. Asymptotics for cuspidal representations by functoriality from GL(2). Journal of Number Theory, Vol. 164, p. 323.


    Mertens, Michael H. and Ono, Ken 2016. SPECIAL VALUES OF SHIFTED CONVOLUTION DIRICHLET SERIES. Mathematika, Vol. 62, Issue. 01, p. 47.


    Murase, Atsushi and Narita, Hiro-aki 2016. Fourier expansion of Arakawa lifting II: Relation with central L-values. International Journal of Mathematics, Vol. 27, Issue. 01, p. 1650001.


    Резвякова, Ирина Сергеевна and Rezvyakova, Irina Sergeevna 2016. О нулях линейных комбинаций L-функций степени два на критической прямой: подход Сельберга. Известия Российской академии наук. Серия математическая, Vol. 80, Issue. 3, p. 151.


    Elliott, P. D. T. A. 2015. Central limit theorems for classical cusp forms. The Ramanujan Journal, Vol. 36, Issue. 1-2, p. 81.


    Elliott, P. D. T. A. 2015. Additive and multiplicative functions from Nottingham to Urbana-Champaign. International Journal of Number Theory, Vol. 11, Issue. 05, p. 1357.


    Garrett, Paul and Heim, Bernhard 2015. Hecke duality of Ikeda lifts. Journal of Number Theory, Vol. 146, p. 171.


    Lao, HuiXue and Sankaranarayanan, Ayyadurai 2015. Integral mean square estimation for the error term related to $\sum\nolimits_{n \leqslant x} {\lambda ^2 (n^2 )} $. Science China Mathematics, Vol. 58, Issue. 10, p. 1.


    Lü, G. 2015. Shifted convolution sums of fourier coefficients with divisor functions. Acta Mathematica Hungarica, Vol. 146, Issue. 1, p. 86.


    Cao, Xiaodong Furuya, Jun Tanigawa, Yoshio and Zhai, Wenguang 2014. On the differences between two kinds of mean value formulas of number-theoretic error terms. International Journal of Number Theory, Vol. 10, Issue. 05, p. 1143.


    Fouvry, Étienne and Ganguly, Satadal 2014. Strong orthogonality between the Möbius function, additive characters and Fourier coefficients of cusp forms. Compositio Mathematica, Vol. 150, Issue. 05, p. 763.


    Lü, Guangshi 2014. Sums of absolute values of cusp form coefficients and their application. Journal of Number Theory, Vol. 139, p. 29.


    Lao, Hui Xue 2013. The cancellation of Fourier coefficients of cusp forms over different sparse sequences. Acta Mathematica Sinica, English Series, Vol. 29, Issue. 10, p. 1963.


    Lü, Guangshi 2013. On higher moments of Fourier coefficients of holomorphic cusp forms II. Monatshefte für Mathematik, Vol. 169, Issue. 3-4, p. 409.


    Parkkonen, Jouni and Paulin, Frédéric 2013. On the arithmetic and geometry of binary Hamiltonian forms. Algebra & Number Theory, Vol. 7, Issue. 1, p. 75.


    Tang, Hengcai 2013. Estimates for the Fourier coefficients of symmetric square L-functions. Archiv der Mathematik, Vol. 100, Issue. 2, p. 123.


    Elliott, P. D. T. A. 2012. A central limit theorem for Ramanujan’s tau function. The Ramanujan Journal, Vol. 29, Issue. 1-3, p. 145.


    Fomenko, O. M. 2012. On summatory functions for automorphic L-functions. Journal of Mathematical Sciences, Vol. 184, Issue. 6, p. 776.


    IVIĆ, ALEKSANDAR 2012. ON THE RANKIN–SELBERG ZETA FUNCTION. Journal of the Australian Mathematical Society, Vol. 93, Issue. 1-2, p. 101.


    ×
  • Mathematical Proceedings of the Cambridge Philosophical Society, Volume 35, Issue 3
  • July 1939, pp. 357-372

Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions: II. The order of the Fourier coefficients of integral modular forms

  • R. A. Rankin (a1)
  • DOI: http://dx.doi.org/10.1017/S0305004100021101
  • Published online: 24 October 2008
Abstract

Suppose that

is an integral modular form of dimensions −κ, where κ > 0, and Stufe N, which vanishes at all the rational cusps of the fundamental region, and which is absolutely convergent for Then

where a, b, c, d are integers such that ad − bc = 1.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

H. Salié , “Zur Abschätzung der Fourierkoeffizienten ganzer Modulformen”, Math. Z. 36 (1931), 263–78.

E. Hecke , “Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung I”, Math. Ann. 114 (1937), 128 (Satz 5).

S. Bochner , “Ein Satz von Landau und Ikehara”, Math. Z. 37 (1933), 19.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×